Skip to main content

Introduction to Shape Memory Alloys

  • Chapter
  • First Online:
Shape Memory Alloys

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. M. Jackson, H. J. Wagner, R. J. Wasilewski, 55- Nitinol — The alloy with a memory: Its physical metallurgy, properties and applications, Tech. Rep. NASA SP-5110, NASA Technology Utilization Office, Washington, D.C. (1972).

    Google Scholar 

  2. T. Duerig, K. Melton, D. Stockel, C. Wayman (Eds.), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London, 1990.

    Google Scholar 

  3. J. Perkins, Shape Memory Effects in Alloys, Plenum Press, New York, 1975.

    Google Scholar 

  4. H. Funakubo (Ed.), Shape Memory Alloys, Gordon and Breach Science Publishers, 1987.

    Google Scholar 

  5. K. Otsuka, C. M. Wayman (Eds.), Shape Memory Materials, Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  6. G. V. Kurdjumov, L. G. Khandros, First reports of the thermoelastic behaviour of the martensitic phase of A u- C d alloys, Doklady Akademii Nauk SSSR 66 (1949) 211–213.

    Google Scholar 

  7. W. J. Buehler, J. V. Gilfrich, R. C. Wiley, Effects of low-temperature phase changes on the mechanical properties of alloys near composition TiNi, Journal of Applied Physics 34 (1963) 1475.

    Article  CAS  Google Scholar 

  8. F. E. Wang, W. J. Buehler, S. J. Pickart, Crystal structure and a unique “martensitic” transition of TiNi, Journal of Applied Physics 36 (3232-3239).

    Google Scholar 

  9. L. Schetky, Shape-memory alloys, Scientific American 241 (74-82).

    Google Scholar 

  10. M. Wayman, J. Harrison, The origins of the shape memory effect, Journal of Minerals, Metals, and Materials 41 (99) (1989) 26–28.

    CAS  Google Scholar 

  11. M. H. Wu, L. M. Schetky, Industrial applications for shape memory alloys, in: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, California, 2000.

    Google Scholar 

  12. H. C. Doonkersloot, V. Vucht, Martensitic transformations in Au-Ti, Pd-Ti and Pt-Ti alloys, Journal of Less-Common Metals 20 (1970)83–91.

    Article  Google Scholar 

  13. K. Melton, O. Mercier, Deformation behavior of NiTi-based alloys, Metallic Tras. 9A (1978) 1487–14488.

    Article  CAS  Google Scholar 

  14. S. Miyazaki, K. Mizukoshi, T. Ueki, T. Sakuma, Y. Liu, Fatigue life of Ti-50 at. Materials Science and Engineering (1999) 658–663.

    Google Scholar 

  15. K. Ullakko, J. K. Huang, C. Kantner, R. C. O’Handley, V. V. Kokorin, Large magnetic-field-induced strains in Ni_2MnGa single crystals, Applied Physics Letters 69 (13) (1996) 1966–1968.

    Article  CAS  Google Scholar 

  16. H. E. Karaca, I. Karaman, B. Basaran, Y. I. Chumlyakov, H. J. Maier, Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals, Acta Materialia 54 (1) (2006) 233–245.

    Article  CAS  Google Scholar 

  17. L. Contardo, G. Guenin, Training and two way memory effect in Cu-Zn-Al alloy, Acta Metallurgica 38 (7) (1990) 1267–1272.

    Article  CAS  Google Scholar 

  18. D. A. Miller, D. C. Lagoudas, Thermo-mechanical characterization of NiTiCu and NiTi SMA actuators: Influence of plastic strains, Smart Materials and Structures 9 (5) (2000) 640–652.

    Article  CAS  Google Scholar 

  19. X. Ren, K. Otsuka, Universal symmetry property of point defects in crystals, Physical Review Letters 85 (5) (2000) 1016–1019.

    Article  CAS  Google Scholar 

  20. P. Rodriguez, G. Guenin, Stability of the two way memory effect during thermal cycling of a high ms temperature Cu-Al-Ni alloy, Materials Science Forum 56–58 (2) (1990) 541–546.

    Google Scholar 

  21. D. A. Miller, D. C. Lagoudas, Influence of cold work and heat treatment on the shape memory effect and plastic strain development of NiTi , Material Science & Engineering A 308 (2001) 161–175.

    Article  Google Scholar 

  22. K. N. Melton, O. Mercier, Fatigue of NiTi thermoelastic martensites, Acta Metallurgica 27 (1979) 137–144.

    Article  CAS  Google Scholar 

  23. H. Tobushi, T. Hachisuka, S. Yamada, P. H. Lin, Rotating-bending fatigue of a TiNi shape-memory alloy wire, Mechanics of Materials 26 (1997) 35–42.

    Article  Google Scholar 

  24. J. L. McNichols, P. C. Brooks, NiTi fatigue behavior, Journal of Applied Physics 52 (1981) 7442–7444.

    Article  CAS  Google Scholar 

  25. H. Tobushi, T. Hachisuka, T. Hashimoto, S. Yamada, Cyclic deformation and fatigue of a TiNi shape memory alloy wire subjected to rotating bending, Journal of Engineering Materials and Technology 120 (1998) 64–70.

    Article  CAS  Google Scholar 

  26. D. Miller, Thermomechanical characterization of plastic deformation and transformation fatigue in shape memory alloys, Ph.D. thesis, Texas A&M University (2000).

    Google Scholar 

  27. O. Bertacchini, D. Lagoudas, E. Patoor, Fatigue life characterization of shape memory alloys undergoing thermomechanical cyclic loading, Proceedings of SPIE, Smart Structures and Materials (2003) 612–624.

    Google Scholar 

  28. K. Gall, H. Maier, Cyclic deformation mechanisms in precipitated NiTi shape memory alloys, Acta Materialia 50 (2002) 4643–4657.

    Article  CAS  Google Scholar 

  29. G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M. Wagner, Structural and functional fatigue of NiTi shape memory alloys, Materials Science and Engineering A (378) (2004) 24–33.

    Google Scholar 

  30. W. Predki, M. Klönne, A. Knopik, Cyclic torsional loading of pseudoelastic NiTi shape memory alloys: Damping and fatigue failure, Materials Science and Engineering A (417) (2006) 182–189.

    Google Scholar 

  31. K. Madangopal, The self accomodating martensitic microstructure of NiTi shape memory alloys, Acta Materialia 45 (12) (1997) 5347–5365.

    Article  CAS  Google Scholar 

  32. W. J. Buehler, R. C. Wiley, Nickel-base alloys, U.S. Patent 3,174,851. (1965).

    Google Scholar 

  33. S. Miyazaki, K. Otsuka, Deformation and transformation behavior associated with the r-phase in Ti - Ni alloys., Metallurgical Transactions A 17A (1986) 53–63.

    Article  CAS  Google Scholar 

  34. D. Hartl, B. Volk, D. C. Lagoudas, F. T. Calkins, J. Mabe, Thermomechanical characterization and modeling of Ni60Ti40 SMA for actuated chevrons, in: Proceedings of ASME, International Mechanical Engineering Congress and Exposition (IMECE), 5–10 November, Chicago, IL, 2006, pp. 1–10.

    Google Scholar 

  35. K. Richardson, Nitinol technologies innovator redefining the cutting edge, Outlook 22 (2) (2001) 1–8.

    Google Scholar 

  36. D. J. Clingman, F. T. Calkins, J. P. Smith, Thermomechanical properties of 60-Nitinol, in: Proceedings of the SPIE, Smart Structures and Materials: Active Materials: Behavior and Mechanics, Vol. 5053, 2003, pp. 219–229.

    CAS  Google Scholar 

  37. J. Mabe, R. Ruggeri, F. T. Calkins, Characterization of nickel-rich nitinol alloys for actuator development, in: Proceedings of the International Conference on Shape Memory and Superelasticity Technology, 2006.

    Google Scholar 

  38. T. H. Nam, T. Saburi, K. Shimizu, Copper-content dependence of shape memory characteristics in Ti - Ni - Cu alloys, Materials Transactions, JIM 31 (11) (1990) 959–967.

    Google Scholar 

  39. T. Saburi, T. Takagi, S. Nenno, K. Koshino, in: M. Doyama, S. Somlya, R. P. H. Chang (Eds.), Shape Memory Materials, MRS International Meeting on Advanced Materials, Vol. 9, 1989, pp. 147–152.

    Google Scholar 

  40. N. M. Matveeva, V. N. Khachin, V. P. Shivokha, Stable and metastable phase equilibrium in metallic systems, Nauka, Moscow, 1985.

    Google Scholar 

  41. Y. Liu, Mechanical and thermomechanical properties of a Ti0.50Ni0.25Cu0.25 melt spun ribbon, Materials Science and Engineering A 354 (2003) 286–291.

    Article  CAS  Google Scholar 

  42. Z. L. Xie, J. Van Humbeeck, Y. Liu, L. Delaey, TEM study of Ti50Ni25Cu25 melt spun ribbons, Scripta Materialia 37 (3) (1997)363–371.

    Article  CAS  Google Scholar 

  43. K. N. Melton, J. Simpson, T. W. Duerig, A new wide hysteresis NiTi based shape memory alloy and its applications, in: Proceedings of The International Conference on Martensitic Transformations, The Japan Institute of Metals, 1986, pp. 1053–1058.

    Google Scholar 

  44. K. N. Melton, J. L. Proft, T. W. Duerig, Wide hysteresis shape memory alloys based on the Ni - Ti - Nb system, MRS 9 (1989) 165–170.

    Google Scholar 

  45. L. C. Zhao, T. W. Duerig, S. Justi, K. N. Melton, J. L. Proft, W. Yu, C. M. Wayman, The study of niobium-rich precipitates in a Ni-Ti-Nb shape memory alloy, Scripta Metallurgica and Materialia 24 (1990)221–226.

    Article  CAS  Google Scholar 

  46. C. S. Zhang, L. C. Zhao, T. W. Duerig, C. M. Wayman, Effects of deformation on the transformation hysteresis and shape memory effect in a Ni47Ti44Nb9 alloy, Scripta Metallurgica and Materialia 2 (1990) 1807–1812.

    Article  Google Scholar 

  47. M. Piao, K. Otsuka, S. Miyazaki, H. Horikawa, Mechanism of the as temperature increase by pre-deformation in thermoelastic alloys, Materials Transactions, JIM 34 (10) (1993) 919–929.

    CAS  Google Scholar 

  48. X. M. He, L. J. Rong, D. S. Yan, Y. Y. Li, TiNiNb wide hysteresis shape memory alloy with low niobium content,Materials Science and Engineering A 371 (2004) 193–197.

    Article  CAS  Google Scholar 

  49. P. G. Lidquist, C. M. Wayman, Shape memory and transformation behavior of martensitic Ti- P d-Ni and Ti- P t-Ni alloys, in: T. W. Duerig, K. N. Melton, D. Stöckel, C. M. Wayman (Eds.), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London, 1990, pp. 58–68.

    Google Scholar 

  50. P. E. Thoma, J. J. Boehm, Effect of composition on the amount of second phase and transformation temperatures of NixTi90-x H f10 shape memory alloys, Materials Science and Engineering A 273-275 (1999) 385–389.

    Article  Google Scholar 

  51. V. N. Khachin, N. A. Matveeva, V. P. Sivokha, D. V. Chernov, High-temperature shape memory effects in TiNi-Ti P d system alloys, Doklady Akademii Nauk SSSR ( USSR ) 257 (1) (1981) 167–169.

    CAS  Google Scholar 

  52. S. Wu, C. Wayman, Martensitic transformations and the shape-memory effect in Ti50Ni10Au40 and Ti50Au50 alloys, Metallography (1987) 359.

    Google Scholar 

  53. P. K. Kumar, D. C. Lagoudas, K. J. Zanca, M. Z. Lagoudas, Thermomechanical characterization of high temperature SMA actuators, in: Proceedings of SPIE, Vol. 6170, 2006, pp. 306–312.

    Google Scholar 

  54. S. Padula II, G. Bigelow, R. Noebe, D. Gaydosh, A. Garg, Challenges and progress in the development of high-temperature shape memory alloys based on NiTiX compositions for high-force actuator applications, in: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, ASM International, Metals Park, OH, 2006.

    Google Scholar 

  55. Z. Pu, H. Tseng, K. Wu, Martensite transformation and shape-memory effect of NiTi-Zr high- temperature shape-memory alloys, in: SPIE proceedings, Vol. 2441, 1995, p. 171.

    Article  CAS  Google Scholar 

  56. B. Strnadel, S. Ohashi, H. Ohtsuka, T. Ishihara, S. Miyazaki, Cyclic stress-strain characteristics of Ti-Ni and Ti-Ni-Cu shape memory alloys, Material Science & Engineering A 202 (1995) 148–156.

    Article  Google Scholar 

  57. P. Potapov, A. Shelyakov, A. Gulyaev, E. Svistunova, N. Matveeva, D. Hodgson, Effect of hf on the structure of Ni-Ti martensitic alloys, Materials Letters 32 (4) (1997) 247–250.

    Article  CAS  Google Scholar 

  58. S. Hsieh, S. Wu, Room-temperature phases observed in Ti53-x Ni47 Zr_x high-temperature shape memory alloys, Journal of Alloys and Compounds 226 (1998) 276–282.

    Article  Google Scholar 

  59. K. Enami, S. Menno, Metal transformation 2 (1971).

    Google Scholar 

  60. R. Kainuma, M. Ise, C. Jia, H. Ohtani, K. Ishida, Phase equilibria and microstructural control in the Ni- C o- A l system, Intermetallics 4 (1996) 151.

    Article  Google Scholar 

  61. D. Schryvers, P. Boullay, P. Potapov, R. Kohn, J. Ball, Microstructures and interfaces in Ni- A l martensite: comparing HRTEM observations with continuum theories, International Journal of Solids Structures 39 (3543).

    Google Scholar 

  62. H. E. Karaca, I. Karaman, D. C. Lagoudas, H. J. Maier, Y. I. Chumlyakov, Recoverable stress-induced martensitic transformation in a ferromagnetic CoNiAl alloy, Scripta Materialia 49 (2003) 831–836.

    Article  CAS  Google Scholar 

  63. H. Morito, A. Fujita, R. Kainuma, K. Ishida, K. Oikawa, Magnetocrystalline anisotropy in single-crystal Co - Ni - Al ferromagnetic shape-memory alloy, Applied Physics Letters 81 (9) (2002) 1657–1659.

    Article  CAS  Google Scholar 

  64. P. J. Webster, K. R. A. Ziebeck, S. L. Town, M. S. Peak, Magnetic order and phase transformation in Ni_2MnGa , Philosophical Magazine B 49 (3) (1984) 295–310.

    Article  CAS  Google Scholar 

  65. S. J. Murray, M. Marioni, S. M. Allen, R. C. O’Handley, 6 magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni - Mn - Ga , Applied Physics Letters 77 (6) (2000) 886–888.

    Article  CAS  Google Scholar 

  66. R. C. O’Handley, S. M. Allen, D. I. Paul, C. P. Henry, M. Marioni, D. Bono, C. Jenkins, A. Banful, R. Wager, Keynote address: Magnetic field-induced strain in single crystal Ni - Mn - Ga , Proceedings of SPIE, Symposium on Smart Structures and Materials 5053 (2003) 200–206.

    CAS  Google Scholar 

  67. A. Sozinov, A. A. Likhachev, N. Lanska, O. Söderberg, K. Ullakko, V. K. Lindroos, Effect of crystal structure on magnetic-field-induced strain in Ni - Mn - Ga , Proceedings of SPIE, Symposium on Smart Structures and Materials 5053 (2003) 586–594.

    CAS  Google Scholar 

  68. H. Karaca, I. Karaman, B. Basaran, D. Lagoudas, Y. Chumlyakov, H. Maier, On the stress-assisted magnetic-field-induced phase transformation in ni2mnga ferromagnetic shape memory alloys, Acta Materialia 55 (2007) 4253–4269.

    Article  CAS  Google Scholar 

  69. J. Cui, T. W. Shield, R. D. James, Phase transformation and magnetic anisotropy of an iron-palladium ferromagnetic shape-memory alloy, Acta Materialia 52 (2004) 35–47.

    Article  CAS  Google Scholar 

  70. R. D. James, M. Wuttig, Magnetostriction of martensite, Philosophical Magazine A 77 (5) (1998) 1273–1299.

    Article  CAS  Google Scholar 

  71. T. W. Shield, Magnetomechanical testing machine for ferromagnetic shape-memory alloys, Review of Scientific Instruments 74 (9) (2003) 4077–4088.

    Article  CAS  Google Scholar 

  72. T. Yamamoto, M. Taya, Y. Sutou, Y. Liang, T. Wada, L. Sorensen, Magnetic field-induced reversible variant rearrangement in Fe - Pd single crystals, Acta Materialia 52 (17) (2004) 5083–5091.

    Article  CAS  Google Scholar 

  73. S. J. Murray, R. Hayashi, M. Marioni, S. M. Allen, R. C. O’Handley, Magnetic and mechanical properties of FeNiCoTi and NiMnGa magnetic shape memory alloys, Proceedings of SPIE 3675 (1999) 204–211.

    Article  CAS  Google Scholar 

  74. A. Fujita, K. Fukamichi, F. Gejima, R. Kainuma, K. Ishida, Magnetic properties and large magnetic-field-induced strains in off-stoichiometric Ni - Mn - Al heusler alloys, Applied Physics Letters 77 (19) (2000) 3054–3056.

    Article  CAS  Google Scholar 

  75. M. Wuttig, J. Li, C. Craciunescu, A new ferromagnetic shape memory alloy system, Scripta Materialia 44 (2001) 2393–2397.

    Article  CAS  Google Scholar 

  76. T. Sakamoto, T. Fukuda, T. Kakeshita, T. Takeuchi, K. Kishio, Magnetic field-induced strain in iron-based ferromagnetic shape memory alloys, Journal of Applied Physics 93 (10) (2003) 8647–8649.

    Article  CAS  Google Scholar 

  77. K. R. Melton, General applications of shape memory alloys and smart materials, in: K. Otsuka, C. M. Wayman (Eds.), Shape Memory Materials, Cambridge University Press, Cambridge, 1999, Ch. 10, pp. 220–239.

    Google Scholar 

  78. C. Liang, F. Davidson, L. M. Schetky, F. K. Straub, Applications of torsional shape memory alloys actuators for active rotor blade control — opportunities and limitations, in: Proceedings of SPIE, Smart Structures and Materials: Smart Structures and Integrated Systems, Vol. 2717, 1996, pp. 91–100.

    Google Scholar 

  79. L. J. Garner, L. N. Wilson, D. C. Lagoudas, O. K. Rediniotis, Development of a shape memory alloy actuated biomimetic vehicle, Smart Materials and Structures 9 (2000) 673–683.

    Article  Google Scholar 

  80. A. A. Ilyin, P. G. Sysolyatin, V. E. Gunter, A. P. Dergilev, M. A. Didin, S. P. Sysolyatin, I. A. Makarova, The use of superelastic shape memory implants in temporo-mandibular joint surgery, Proceedings of the First International Symposium on Advanced Biomaterials (ISAB), Montreal, Canada (1997) 177.

    Google Scholar 

  81. V. Brailovski, F. Trochu, Review of shape memory alloys medical applications in R ussia, Bio-Medical Materials & Engineering 6 (4) (1996) 291–298.

    CAS  Google Scholar 

  82. B. Sanders, R. Crowe, E. Garcia, Defense advanced research projects agency – S mart materials and structures demonstration program overview, Journal of Intelligent Material Systems and Structures 15 (2004) 227–233.

    Article  Google Scholar 

  83. J. Kudva, Overview of the DARPA smart wing project, Journal of Intelligent Material Systems and Structures 15 (2004) 261–267.

    Article  Google Scholar 

  84. J. K. Strelec, D. C. Lagoudas, M. A. Khan, J. Yen, Design and implementation of a shape memory alloy actuated reconfigurable wing, Journal of Intelligent Material Systems and Structures 14 (2003) 257–273.

    Article  Google Scholar 

  85. R. Mani, D. Lagoudas, O. Rediniotis, MEMS based active skin for turbulent drag reduction, in: Proceedings of SPIE, Smart Structures and Materials, Vol. 5056, San Diego, CA, 2003, pp. 9–20.

    Google Scholar 

  86. M. Tawfik, J. Ro, C. Mei, Thermal post-buckling and aeroelastic behaviour of shape memory alloy reinforced plates, Smart Materials and Structures 11 (2002) 297–307.

    Article  CAS  Google Scholar 

  87. C. Nam, A. Chattopadhyay, Y. Kim, Application of shape memory alloy ( SMA ) spars for aircraft maneuver enhancement, in: Proceedings of SPIE, Smart Structures and Materials, Vol. 4701, San Diego, CA, 2002, pp. 226–236.

    Google Scholar 

  88. D. Pitt, J. Dunne, E. White, E. Garcia, SAMPSON smart inlet SMA powered adaptive lip design and static test, Proceedings of the 42nd AIAA Structures, Structrual Dynamics, and Materials Conference, Seattle, WA, 16–20 April 2001 (2001) 1–11.

    Google Scholar 

  89. S. Wax, G. Fischer, R. Sands, The past, present, and future of DARPAs investment strategy in smart materials, Journal of the Minerals, Metals, and Materials Society 55 (12) (2003) 17–23.

    Google Scholar 

  90. J. Mabe, R. Cabell, G. Butler, Design and control of a morphing chevron for takeoff and cruise noise reduction, in: Proceedings of the 26th Annual AIAA Aeroacoustics Conference, Monterey, CA, 2005, pp. 1–15.

    Google Scholar 

  91. T. Turner, R. Buehrle, R. Cano, G. Fleming, Modeling, fabrication, and testing of a SMA hybrid composite jet engine chevron concept, Journal of Intelligent Material Systems and Structures 17 (2006) 483–497.

    Article  CAS  Google Scholar 

  92. J. H. Mabe, F. Calkins, G. Butler, Boeing’s variable geometry chevron, morphing aerostructure for jet noise reduction, in: 47th AIAA/ ASME / ASCE / AHS / ASC Structures, Structural Dynamics and Materials Conference, Newport, Rhode Island, 2006, pp. 1–19.

    Google Scholar 

  93. V. Birman, Review of mechanics of shape memory alloy structures, Applied Mechanics Reviews 50 (11) (1997) 629–645.

    Article  Google Scholar 

  94. H. Prahlad, I. Chopra, Design of a variable twist tiltrotor blade using shape memmory alloy ( SMA ) actuators, in: Proceedings of SPIE, Smart Structures and Materials, Vol. 4327, Newport Beach, CA, 2001, pp.46–59.

    Google Scholar 

  95. A. Jacot, R. Ruggeri, D. Clingman, Shape memory alloy device and control method, U.S. Patent 7,037,076 (2 May (2006).

    Google Scholar 

  96. K. Singh, J. Sirohi, I. Chopra, An improved shape memory alloy actuator for rotor blade tracking, Journal of Intelligent Material Systems and Structures 14 (2003) 767–786.

    Article  Google Scholar 

  97. D. Kennedy, F. Straub, L. Schetky, Z. Chaudhry, R. Roznoy, Development of an SMA actuator for in-flight rotor blade tracking, Journal of Intelligent Material Systems and Structures 15 (2004) 235–248.

    Article  Google Scholar 

  98. R. Loewy, Recent developments in smart structures with aeronautical applications, Smart Materials and Structures 6 (1997) R11–R42.

    Article  Google Scholar 

  99. C. Test, S. Leone, S. Ameduri, A. Concilio, Feasibility study on rotorcraft blade morphing in hovering, in: Proceedings of SPIE, Smart Structures and Materials, Vol. 5764, San Diego, CA, 2005, pp. 171–182.

    Google Scholar 

  100. A. Johnson, Non-explosive seperation device, U.S. Patent 5,119,555 (June 1992).

    Google Scholar 

  101. O. Godard, M. Lagoudas, D. Lagoudas, Design of space systems using shape memory alloys, in: Proceedings of SPIE, Smart Structures and Materials, Vol. 5056, San Diego, CA, 2003, pp. 545–558.

    Google Scholar 

  102. C. Willey, B. Huettl, S. Hill, Design and development of a miniature mechanisms tool-kit for micro spacecraft, in: Proceedings of the 35 th Aerospace Mechanisms Symposium, Ames Research Center, 9–11 May, 2001, pp. 1–14.

    Google Scholar 

  103. A. Peffer, K. Denoyer, E. Fossness, D. Sciulli, Development and transition of low-shock spacecraft release devices, in: Proceedings of IEEE Aerospace Conference, Vol. 4, 2000, pp. 277–284.

    Google Scholar 

  104. B. Carpenter, J. Lyons, EO-1 technology validation report: L ightweight flexible solar array experiment, Tech. rep., NASA Godard Space Flight Center, Greenbelt, MD (8 August 2001).

    Google Scholar 

  105. S. Shabalovskaya, Biological aspects of TiNi alloys surfaces, Journal de Physique IV 5 (1995) 1199–1204.

    Article  CAS  Google Scholar 

  106. J. Ryhänen, Biocompatibility evolution of nickel-titanium shape memory alloy, Ph.D. thesis, Univeristy of Oulu, Oulu, Finland (1999).

    Google Scholar 

  107. L. Machado, M. Savi, Medical applications of shape memory alloys, Brazilian Journal of Medical and Biological Research 36 (2003) 683–691.

    CAS  Google Scholar 

  108. D. Mantovani, Shape memory alloys: P roperties and biomedical applications, Journal of the Minerals, Metals and Materials Society 52 (2000) 36–44.

    CAS  Google Scholar 

  109. K. Speck, A. Fraker, Anodic polarization behavior of Ti-Ni and Ti-6 A l-4 V in simulated physiological solutions, J Dent Res 59 (100) (1980) 1590–1595.

    CAS  Google Scholar 

  110. G. Andreasen, T. Hilleman, An evaluation of 55 cobalt subsituted nitinol wire for use in orthodontics, Journal of the American Dental Association 82 (1971) 1373–1375.

    CAS  Google Scholar 

  111. S. Thompson, An overview of nickel-titanium alloys used in dentistry, International Endodontic Journal 33 (2000) 297–310.

    Article  CAS  Google Scholar 

  112. T. Duerig, A. Pelton, D. Stöckel, Superelastic nitinol for medical devices, Medical Plastics and Biomaterials (1997) 31–42.

    Google Scholar 

  113. D. Lagoudas, E. Vandygriff, Processing and characterization of niti porous sma by elevated pressure sintering, Journal of intelligent material system and structures 13 (2002) 837–850.

    Article  CAS  Google Scholar 

  114. J. Paine, C. Rogers, High velocity impact response of composites with surface bonded nitinol- SMA hybrid layers, Journal of Intelligent Material Systems and Structures 5 (4) (1994) 530–535.

    Article  CAS  Google Scholar 

  115. B. Barnes, D. B. J. Luntz, A. Browne, K. Strom, Panel deployment using ultrafast SMA latches, in: ASME International Mechanical Engineering Congress and Exposition, Chicago, Illinois, USA, 2006.

    Google Scholar 

  116. K. Otsuka, T. Kakeshita, Science and technology of shape-memory alloys: New developments, bulletin (February (2002).

    Google Scholar 

  117. P. Anderson, A., S. Sangesland, Detailed study of shape memory alloys in oil well applications., Sintef petroleum research, Trondheim, Norway (1999).

    Google Scholar 

  118. I. Ohkata, Y. Suzuki, The design of shape memory alloy actuators and their applications, in: K. Otsuka, C. M. Wayman (Eds.), Shape Memory Materials, Cambridge University Press, Cambridge, 1999, Ch. 11, pp. 240–266.

    Google Scholar 

  119. S. Saadat, J. Salichs, M. Noori, Z. Hou, H. Davoodi, I. Bar-on, An overview of vibration and seismic applications of NiTi shape memory alloy, Smart Materials and Structures 11 (2002) 218–229.

    Article  CAS  Google Scholar 

  120. J. Evans, D. Brei, J. Luntz, Preliminary experimental study of SMA knitted actuation architectures, in: ASME International Mechanical Engineering Congress and Exposition, 2006.

    Google Scholar 

  121. V. Brailovski, S. Prokoshkin, P. Terriault, F. Trochu (Eds.), Shape Memory Alloys: Fundamentals, Modeling and Applications, University of Quebec, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag US

About this chapter

Cite this chapter

Kumar, P., Lagoudas, D. (2008). Introduction to Shape Memory Alloys. In: Shape Memory Alloys., vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47685-8_1

Download citation

Publish with us

Policies and ethics