Skip to main content

Adaptable Parallel Components for Grid Programming

  • Chapter
Integrated Research in GRID Computing

Abstract

We suggest that parallel software components used for grid computing should be adaptable to application-specific requirements, instead of developing new components from scratch for each particular application. As an example, we take a parallel farm component which is “embarrassingly parallel”, i. e., free of dependencies, and adapt it to the wavefront processing pattern with dependencies that impact its behavior. We describe our approach in the context of Higher-Order Components (HOCs), with the Java-based system Lithium as our implementation framework. The adaptation process relies on HOCs’ mobile code parameters that are shipped over the network of the grid. We describe our implementation of the proposed component adaptation method and report first experimental results for a particular grid application — the alignment of DNA sequence pairs, a popular, time-critical problem in computational molecular biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S. Bromling, and K. Tan. Generating parallel programs from the wavefront design pattern. In 7th Workshop on High-Level Parallel Programming Models. IEEE Computer Society Press, 2002.

    Google Scholar 

  2. F. Baude, D. Caramel, and M. Morel. From distributed objects to hierarchical grid components. In International Symposium on Distributed Objects and Applications (DOA). Springer LNCS, Catania, Sicily, 2003.

    Google Scholar 

  3. M. I. Cole. Algorithmic Skeletons: A Structured Approach to the Management of Parallel Computation. Pitman, 1989.

    Google Scholar 

  4. M. Danelutto and P. Teti. Lithium: A structured parallel programming enviroment in Java. In Proceedings of Computational Science-ICCS, number 2330 in Lecture Notes in Computer Science, pages 844–853. Springer-Verlag, Apr. 2002.

    Google Scholar 

  5. J. Dünnweber and S. Gorlatch. HOC-SA: A grid service architecture for higher-order components. In IEEE International Conference on Services Computing, Shanghai, China, pages 288–294. IEEE Computer Society Press, Sept. 2004.

    Google Scholar 

  6. Globus Alliance. http://www.globus.org, 1996.

    Google Scholar 

  7. S. Gorlatch and J. Dünnweber. From Grid Middleware to Grid Applications: Bridging the Gap with HOCs. In Future Generation Grids. Springer Verlag, 2005.

    Google Scholar 

  8. J. Kleinjung, N. Douglas, and J. Heringa. Parallelized multiple alignment. In Bioinformatics 18. Oxford University Press, 2002.

    Google Scholar 

  9. L. Lamport. The parallel execution of do loops. In Commun. ACM, volume 17,2, pages 83–93. ACM Press, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  10. C. Lengauer. Loop parallelization in the polytope model. In International Conference on Concurrency Theory, pages 398–416, 1993.

    Google Scholar 

  11. V. I. Levenshtein. Binary codes capable of correcting insertions and reversals. In Soviet Physics Dokl. Volume 10, pages 707–710, 1966.

    MathSciNet  Google Scholar 

  12. M. Aldinucci, S. Campa et al. The implementation of ASSIST, an environment for parallel and distributed programming. In H. Kosch, L. Böszörményi, and H. Hellwagner, editors, Proc. of the Euro-Par 2003, number 2790 in lncs, pages 712–721. Springer, Aug. 2003.

    Google Scholar 

  13. M. Schmollinger, K. Nieselt, M. Kaufmann, and B. Morgenstern. Dialign p: Fast pair-wise and multiple sequence alignment using parallel processors. In BMC Bioinformatics 5. BioMed Central, 2004.

    Google Scholar 

  14. C. Szyperski. Component software: Beyond object-oriented programming. Addison Wesley, 1998.

    Google Scholar 

  15. Unicore Forum e.V. UNICORE-Grid, http://www.unicore.org, 1997.

    Google Scholar 

  16. M. Wolfe. Loop skewing: the wavefront method revisited. In Journal of Parallel Programming, Volume 15, pages 279–293, 1986.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dünnweber, J., Gorlatch, S., Aldinucci, M., Campa, S., Danelutto, M. (2007). Adaptable Parallel Components for Grid Programming. In: Gorlatch, S., Danelutto, M. (eds) Integrated Research in GRID Computing. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47658-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-47658-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-47656-8

  • Online ISBN: 978-0-387-47658-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics