Skip to main content

Part of the book series: Optical Networks ((OPNW))

  • 283 Accesses

Abstract

Quality of Service (QoS) mechanisms in a network can be broadly divided into two categories: QoS improvement and QoS provisioning mechanisms. A QoS improvement mechanism can be defined as any mechanism that improves the general performance of the network. Although less obvious than QoS provisioning mechanisms, QoS improvement mechanisms are very important in enabling the network to provide satisfactory service to end users. They allow the network to accommodate more users and reduce the cost of data transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. B. Sarrazin, H. F. Jordan, and V. P. Heuring, “Fiber Optic Delay Line Memory,” Applied Optics, vol. 29, no. 5, pp. 627–637, 1990.

    Article  Google Scholar 

  2. I. Chlamtac et al., “CORD: Contention Resolution by Delay Lines,” IEEE Journal on Selected Areas in Communications, vol. 14, no. 5, pp. 1014–1029, 1996.

    Article  Google Scholar 

  3. D. K. Hunter, M. C. Chia, and I. Andonovic, “Buffering in Optical Packet Switches,” IEEE/OSA Journal of Lightwave Technology, vol. 16, no. 12, pp. 2081–2094, 1998.

    Article  Google Scholar 

  4. W. D. Zhong and R. S. Tucker, “A New Wavelength-Routed Photonic Packet Buffer Combining Traveling Delay Lines with Delay Line Loops,” IEEE/OSA Journal of Lightwave Technology, vol. 19, no. 8, pp. 1085–1092, 2001.

    Article  Google Scholar 

  5. T. Zhang, K. Lu, and J. P. Jue, “Shared Fiber Delay Line Buffers in Asynchronous Optical Packet Switches,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 4, pp. 118–127, 2006.

    Article  Google Scholar 

  6. K. K. Merchant et al., “Analysis of an Optical Burst Switching Router With Tunable Multiwavelength Recirculating Buffers,” IEEE/OSA Journal of Lightwave Technology, vol. 23, no. 10, pp. 3302–3312, 2005.

    Article  Google Scholar 

  7. D. K. Hunter, W. D. Cornwell, T. H. Gilfedder, A. Franzen, and I. Andonovic, “SLOB: A Switch with Large Optical Buffers for Packet Switching,” IEEE/OSA Journal of Lightwave Technology, vol. 16, no. 10, pp. 1725–1736, 1998.

    Article  Google Scholar 

  8. I. Chlamtac, A. Fumagalli, and C. J. Shu, “Multibuffer Delay Line Architectures for Efficient Contention Resolution in Optical Switching Nodes,” IEEE Transactions on Communications, vol. 48, no. 12, pp. 2089–2098, 2000.

    Article  Google Scholar 

  9. N. Ogashiwa, H. Harai, N. Wada, F. Kubota, and Y. Shinoda, “Multi-Stage Fiber Delay Line Buffer in Photonic Packet Switch for Asynchronously Arriving Variable-Length Packets,” IEICE Transactions on Communications, vol. E88-B, no. 1, pp. 258–265, 2005.

    Article  Google Scholar 

  10. R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Slow-Light Optical Buffers: Capabilities and Fundamental Limitations,” IEEE/OSA Journal of Lightwave Technology, vol. 23, no. 12, pp. 4046–4066, 2005.

    Article  Google Scholar 

  11. A. S. Acampora and S. I. A. Shah, “Multihop Lightwave Networks: A Comparison of Store-and-Forward and Hot-Potato Routing,” IEEE Transactions on Communications, vol. 40, no. 6, pp. 1082–1090, 1992.

    Article  Google Scholar 

  12. A. G. Greenberg and B. Hajek, “Deflection Routing in Hypercube Networks,” IEEE Transactions on Communications, vol. 40, no. 6, pp. 1070–1081, 1992.

    Article  MATH  Google Scholar 

  13. F. Forghieri, A. Boroni, and P. R. Prucnal, “Analysis and Comparison of Hot-Potato and Single-Buffer Deflection Routing in Very High Bit Rate Optical Mesh Networks,” IEEE Transactions on Communications, vol. 43, no. 1, pp. 88–98, 1995.

    Article  Google Scholar 

  14. T. Chich, J. Cohen, and P. Fraigniaud, “Unslotted Deflection Routing: A Practical and Efficient Protocol for Multihop Optical Networks,” IEEE/ACM Transactions on Networking, vol. 9, no. 1, pp. 47–59, 2001.

    Article  Google Scholar 

  15. S. Yao, B. Mukherjee, S. J. B. Yoo, and S. Dixit, “A Unified Study of Contention-Resolution Schemes in Optical Packet-Switched Networks,” IEEE/OSA Journal of Lightwave Technology, vol. 21, no. 3, pp. 672–683, 2003.

    Article  Google Scholar 

  16. C.-F. Hsu, T.-L. Liu, and N.-F. Huang, “Performance Analysis of Deflection Routing in Optical Burst-Switched Networks,” in Proc. IEEE Infocom, 2002, pp. 66–73.

    Google Scholar 

  17. S. Lee, K. Sriram, H. Kim, and J. Song, “Contention-Based Limited Deflection Routing Protocol in Optical Burst-Switched Networks,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 8, pp. 1596–1611, 2005.

    Article  Google Scholar 

  18. N. Ogino, and H. Tanaka, “Deflection Routing for Optical Bursts Considering Possibility of Contention at Downstream Nodes,” IEICE Transactions on Communications, vol. E88-B, no. 9, pp. 3660–3667, 2005.

    Article  Google Scholar 

  19. C. Cameron, A. Zalesky, and M. Zukerman, “Prioritized Deflection Routing in Optical Burst Switching,” IEICE Transactions on Communications, vol. E88-B, no. 5, pp. 1861–1867, 2005.

    Article  Google Scholar 

  20. A. Detti, V. Eramo, and M. Listanti, “Performance Evaluation of a New Technique for IP Support in a WDM Optical Network: Optical Composite Burst Switching (OCBS),” IEEE/OSA Journal of Lightwave Technology, vol. 20, no. 2, pp. 154–165, 2002.

    Article  Google Scholar 

  21. V. M. Vokkarane and J. P. Jue, “Burst Segmentation: An Approach for Reducing Packet Loss in Optical Burst Switched Networks,” SPIE/Kluwer Optical Networks, vol. 4, no. 6, pp. 81–89, 2003.

    Google Scholar 

  22. V. M. Vokkarane, G. P. Thodime, V. U. Challagulla, and J. P. Jue, “Channel Scheduling Algorithms using Burst Segmentation and FDLs for Optical Burst-Switched Networks,” in Proc. IEEE International Conference on Communications, 2003, pp. 1443–1447.

    Google Scholar 

  23. W. Tan, S. Wang, and L. Li, “Burst Segmentation for Void-Filling Scheduling and Its Performance Evaluation in Optical Burst Switching,” Optics Express, vol. 12, no. 26, pp. 6615–6623, 2004.

    Article  Google Scholar 

  24. Z. Rosberg, H. L. Vu, M. Zukerman, and J. White, “Performance Analyses of Optical Burst Switching Networks,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 7, pp. 1187–1197, 2003.

    Article  Google Scholar 

  25. V. Eramo and M. Listanti, “Packet Loss in a Bufferless Optical WDM Switch Employing Shared Tunable Wavelength Converters,” IEEE/OSA Journal of Lightwave Technology, vol. 18, no. 12, pp. 1818–1833, 2000.

    Article  Google Scholar 

  26. V. Eramo, M. Listanti, and P. Pacifici, “A Comparison Study on the Number of Wavelength Converters Needed in Synchronous and Asynchronous All-Optical Switching Architectures,” IEEE/OSA Journal of Lightwave Technology, vol. 21, no. 2, pp. 340–355, 2003.

    Article  Google Scholar 

  27. M. Yao, Z. Liu, and A. Wen, “Accurate and Approximate Evaluations of Asynchronous Tunable Wavelength Converter Sharing Schemes in Optical Burst Switched Networks,” IEEE/OSA Journal of Lightwave Technology, vol. 23, no. 10, pp. 2807–2815, 2005.

    Article  Google Scholar 

  28. G. Shen, S. K. Bose, T. H. Cheng, C. Lu, and T. Y. Chai, “Performance Study on a WDM Packet Switch with Limited-Range Wavelength Converters,” IEEE Communications Letters, vol. 5, no. 10, pp. 432–434, 2001.

    Article  Google Scholar 

  29. Z. Zhang and Y. Yang, “Performance Modeling of Bufferless WDM Packet Switching Networks with Wavelength Conversion,” in Proc. IEEE Globecom, 2003, pp. 2498–2502.

    Google Scholar 

  30. V. Eramo, M. Listanti, and M. Spaziani, “Resources Sharing in Optical Packet Switches with Limited-Range Wavelength Converters,” IEEE/OSA Journal of Lightwave Technology, vol. 23, no. 2, pp. 671–687, 2005.

    Article  Google Scholar 

  31. J. S. Turner, “Terabit Burst Switching,” Journal of High Speed Network, vol. 8, no. 1, pp. 3–16, 1999.

    Google Scholar 

  32. Y. Xiong, M. Vandenhoute, and H. C. Cankaya, “Control Architecture in Optical Burst-Switched WDM Networks,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 10, pp. 1838–1851, 2000.

    Article  Google Scholar 

  33. L. Tančevski, S. Yegnanarayanan, G. Castanon, L. Tamil, F. Masetti, and T. Mc-Dermott, “Optical Routing of Asynchronous, Variable Length Packets,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 10, pp. 2084–2093, 2000.

    Article  Google Scholar 

  34. M. Iizuka, M. Sakuta, Y. Nishino, and I. Sasase, “A Scheduling Algorithm Minimizing Voids Generated by Arriving Bursts in Optical Burst Switched WDM Network,” in Proc. IEEE Globecom, 2002, pp. 2736–2740.

    Google Scholar 

  35. M. Ljolje, R. Inkret, and B. Mikac, “A Comparative Analysis of Data Scheduling Algorithms in Optical Burst Switching Networks,” in Proc. Conference on Optical Network Design and Modeling, 2005, pp. 493–500.

    Google Scholar 

  36. S. Q. Zheng, Y. Xiong, and H. C. Cankaya, “Hardware Design of a Channel Scheduling Algorithm for Optical Burst Switching Routers,” in Proc. SPIE, vol. 4872, 2002, pp. 199–209.

    Article  Google Scholar 

  37. J. Xu, C. Qiao, J. Li, and G. Xu, “Efficient Burst Scheduling Algorithms in Optical Burst-Switched Networks Using Geometric Techniques,” IEEE Journal on Selected Areas in Communications, vol. 22, no. 9, pp. 1796–1811, 2004.

    Article  Google Scholar 

  38. F. Farahmand, and J. P. Jue, “Look-Ahead Window Contention Resolution in Optical Burst Switched Networks,” in Proc. IEEE Workshop on High Performance Switching and Routing, 2003, pp. 147–151.

    Google Scholar 

  39. S. Charcranoon, T. S. El-Bawab, J. D. Shin, and H. C. Cankaya, “Group Scheduling for Multi-Service Optical Burst Switching (OBS) Networks,” Photonic Network Communications, vol. 11, no. 1, pp. 99–110, 2006.

    Article  Google Scholar 

  40. H. Li, H. Neo, and L. J. I. Thng, “Performance of the Implementation of a PipeLine Buffering System in Optical Burst Switching Networks,” in Proc. IEEE Globecom, 2003, pp. 2503–2507.

    Google Scholar 

  41. J. Li, C. Qiao, and Y. Chen, “Maximizing Throughput for Optical Burst Switching Networks,” in Proc. IEEE Infocom, 2004, pp. 1853–1863.

    Google Scholar 

  42. N. Barakat, and E. H. Sargent, “Separating Resource Reservations from Service Requests to Improve the Performance of Optical Burst Switching Networks,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 4, pp. 95–107, 2006.

    Article  Google Scholar 

  43. S. K. Tan, G. Mohan, and K. C. Chua, “Algorithms for Burst Rescheduling in WDM Optical Burst Switching Networks,” Computer Networks, vol. 41, no. 1, pp. 41–55, 2003.

    Article  MATH  Google Scholar 

  44. S. K. Tan, G. Mohan, and K. C. Chua, “Burst Rescheduling with Wavelength and Last-Hop FDL Reassignment in WDM Optical Burst Switching Networks,” in Proc. IEEE International Conference on Communications, 2003, pp. 1448–1452.

    Google Scholar 

  45. M. H. Phung, K. C. Chua, G. Mohan, M. Motani, T. C. Wong, and P. Y. Kong, “On Ordered Scheduling for Optical Burst Switching,” Computer Networks, vol. 48, no. 6, pp. 891–909, 2005.

    Article  Google Scholar 

  46. R. Bhagwan and B. Lin, “Fast and Scalable Priority Queue Architecture for High-Speed Network Switches,” in Proc. IEEE Infocom, 2000, pp. 538–547.

    Google Scholar 

  47. A. Ioannou and M. Katevenis, “Pipelined Heap (Priority Queue) Management for Advanced Scheduling in High-Speed Networks,” in Proc. IEEE International Conference on Communications, 2001, pp. 2043–2047.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Node-Based QoS Improvement Mechanisms. In: Quality of Service in Optical Burst Switched Networks. Optical Networks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47647-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-47647-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-34160-6

  • Online ISBN: 978-0-387-47647-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics