Skip to main content

Gap Junctions

Cell-Cell Channels in Animals

  • Chapter
Cell-Cell Channels
  • 977 Accesses

Abstract

Gap junctions provide one of the most common forms of intercellular communication. The structures underlying these communicating cell junctions1 were soon resolved in membrane associated particles forming aggregates of six subunits.2 They are composed of membrane proteins that form a channel that is permeable to ions and small molecules, connecting the cytoplasm of acdjacent cells. Two unrelated protein families are involved in this function; connexins, which are found only in chordates, and pannexins, which are ubiquitous and present in both chordate and invertebrate genomes.3 In this chapter, structural and functional issues of gap junction channels are reviewed. Several types of pathologies associated to channel dysfunction, with an emphasis on deafness, are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett MV. Physiology of electrotonic junctions. Ann NY Acad Sci 1966; 137:509–539.

    Article  PubMed  CAS  Google Scholar 

  2. Revel JP, Karnovsky MJ. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol 1967; 33:C7–C12.

    Article  PubMed  CAS  Google Scholar 

  3. Panchin YV. Evolution of gap junction proteins—the pannexin alternative. J Exp Biol 2005; 208:1415–1419.

    Article  PubMed  CAS  Google Scholar 

  4. Harris AL. Emerging issues of connexin channels: Biophysics fills the gap. Q Rev Biophys 2001; 34:325–472.

    PubMed  CAS  Google Scholar 

  5. Willecke K, Eiberger J, Degen J et al. Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 2002; 383:725–737.

    Article  PubMed  CAS  Google Scholar 

  6. Beyer EC, Paul DL, Goodenough DA. Connexin family of gap junction proteins. J Membr Biol 1990; 116:187–194.

    Article  PubMed  CAS  Google Scholar 

  7. Kumar NM, Gilula NB. The gap junction communication channel. Cell 1996; 84:381–388.

    Article  PubMed  CAS  Google Scholar 

  8. Beyer EC, Willecke K. Gap junction genes and their regulation. In: Bittar EE, Hel, eds. Gap Junctions. Vol 30. Stamford, Connecticut: Jai Press Inc., 2000:1–29.

    Chapter  Google Scholar 

  9. Bruzzone R, White TW, Paul DL. Connections with connexins: The molecular basis of direct intercellular signaling. Eur J Biochem 1996; 238:1–27.

    Article  PubMed  CAS  Google Scholar 

  10. Martin PE, Evans WH. Incorporation of connexins into plasma membranes and gap junctions: Cardiovasc. Res 2004; 62:378–387.

    CAS  Google Scholar 

  11. Unger VM, Kumar NM, Gilula NB et al. Three-dimensional structure of a recombinant gap junction membrane channel. Science 1999; 283:1176–1180.

    Article  PubMed  CAS  Google Scholar 

  12. Yeager M, Unger VM. Culturing of mammalian cells expressing recombinant connexins and two-dimensional crystallization of the isolated gap junctions. Methods Mol Biol 2001; 154:77–89.

    PubMed  CAS  Google Scholar 

  13. Skerrett IM, Aronowitz J, Shin JH et al. Identification of amino acid residues lining the pore of a gap junction channel. J Cell Biol 2002; 159:349–360.

    Article  PubMed  CAS  Google Scholar 

  14. Fleishman SJ, Unger VM, Yeager M et al. A c-alpha model for the transmembrane alpha helices of gap junction intercellular channels. Mol Cell 2004; 15:879–888.

    Article  PubMed  CAS  Google Scholar 

  15. George CH, Kendall JM, Evans WH. Intracellular trafficking pathways in the assembly of connexins into gap junctions. J Biol Chem 1999; 274:8678–8685.

    Article  PubMed  CAS  Google Scholar 

  16. Segretain D, Falk MM. Regulation of connexin biosynthesis, assembly, gap junction formation, and removal. Biochim Biophys Acta 2004; 1662:3–21.

    Article  PubMed  CAS  Google Scholar 

  17. Falk MM, Buehler LK, Kumar NM et al. Cell-free synthesis and assembly of connexins into functional gap junction membrane channels. EMBO J 1997; 16:2703–2716.

    Article  PubMed  CAS  Google Scholar 

  18. Goldberg GS, Valiunas V, Brink PR. Selective permeability of gap junction channels. Biochim Biophys Acta 2004; 1662:96–101.

    Article  PubMed  CAS  Google Scholar 

  19. Bedner P, Niessen H, Odermatt B et al. A method to determine the relative camp permeability of connexin channels. Exp Cell Res 2003; 291:25–35.

    Article  PubMed  CAS  Google Scholar 

  20. Lawrence TS, Beers WH, Gilula NB. Transmission of hormonal stimulation by cell-to-cell communication. Nature 1978; 272:501–506.

    Article  PubMed  CAS  Google Scholar 

  21. Saez JC, Connor JA, Spray DC et al. Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proc Natl Acad Sci USA 1989; 86:2708–2712.

    Article  PubMed  CAS  Google Scholar 

  22. Sanderson MJ. Intercellular calcium waves mediated by inositol trisphosphate. Ciba Found Symp 1995; 188:175–189, (189–194).

    PubMed  CAS  Google Scholar 

  23. Weber PA, Chang HC, Spaeth KE et al. The permeability of gap junction channels to probes of different size is dependent on connexin composition and permeant-pore affinities. Biophys J 2004; 87:958–973.

    Article  PubMed  CAS  Google Scholar 

  24. Elfgang C, Eckert R, Lichtenberg-Frate H et al. Specific permeability and selective formation of gap junction channels in connexin-transfected hela cells. J Cell Biol 1995; 129:805–817.

    Article  PubMed  CAS  Google Scholar 

  25. Beltramello M, Piazza V, Bukauskas FF et al. Impaired permeability to ins(l,4,5)p(3) in a mutant connexin underlies recessive hereditary deafness. Nat Cell Biol 2005; 7:63–69.

    Article  PubMed  CAS  Google Scholar 

  26. Qu Y, Dahl G. Function of the voltage gate of gap junction channels: Selective exclusion of molecules. Proc Natl Acad Sci USA 2002; 99:697–702.

    Article  PubMed  CAS  Google Scholar 

  27. Niessen H, Willecke K. Strongly decreased gap junctional permeability to inositol 1,4, 5-trisphosphate in connexin32 deficient hepatocytes. Febs Lett 2000; 466:112–114.

    Article  PubMed  CAS  Google Scholar 

  28. Niessen H, Harz H, Bedner P et al. Selective permeability of different connexin channels to the second messenger inositol 1,4,5-trisphosphate. J Cell Sci 2000; 113:1365–1372.

    PubMed  CAS  Google Scholar 

  29. Valiunas V, Beyer EC, Brink PR. Cardiac gap junction channels show quantitative differences in selectivity. Circ Res 2002; 91(2):104–111.

    Article  PubMed  CAS  Google Scholar 

  30. Bukauskas FF, Verselis VK. Gap junction channel gating. Biochim Biophys Acta 2004; 1662:42–60.

    Article  PubMed  CAS  Google Scholar 

  31. Peracchia C. Chemical gating of gap junction channels; roles of calcium, ph and calmodulin. Biochim Biophys Acta 2004; 1662:61–80.

    Article  PubMed  CAS  Google Scholar 

  32. Verselis V, White RL, Spray DC et al. Gap functional conductance and permeability are linearly related. Science 1986; 234:461–464.

    Article  PubMed  CAS  Google Scholar 

  33. Bennett MV. Gap junctions as electrical synapses. J Neurocytol 1997; 26:349–366.

    Article  PubMed  CAS  Google Scholar 

  34. Suchyna TM, Xu LX, Gao F et al. Identification of a proline residue as a transduction element involved in voltage gating of gap junctions. Nature 1993; 365:847–849.

    Article  PubMed  CAS  Google Scholar 

  35. Oh S, Rivkin S, Tang Q et al. Determinants of gating polarity of a connexin 32 hemichannel. Biophys J 2004; 87:912–928.

    Article  PubMed  CAS  Google Scholar 

  36. Veenstra RD, Dehaan RL. Measurement of single channel currents from cardiac gap junctions. Science 1986; 233:972–974.

    Article  PubMed  CAS  Google Scholar 

  37. Peracchia C, Wang XG, Peracchia LL. Chemical gating of gap junction channels. Methods 2000; 20:188–195.

    Article  PubMed  CAS  Google Scholar 

  38. Sosinsky GE, Gaietta GM, Hand G et al. Tetracysteine genetic tags complexed with biarsenical ligands as a tool for investigating gap junction structure and dynamics. Cell Commun Adhes 2003; 10:181–186.

    Article  PubMed  CAS  Google Scholar 

  39. Lampe PD, Lau AF. The effects of connexin phosphorylation on gap junctional communication. Int J Biochem Cell Biol 2004; 36:1171–1186.

    Article  PubMed  CAS  Google Scholar 

  40. Warn-Cramer BJ, Lau AF. Regulation of gap junctions by tyrosine protein kinases. Biochim Biophys Acta 2004; 1662:81–95.

    Article  PubMed  CAS  Google Scholar 

  41. Traub O, Look J, Dermietzel R et al. Comparative characterization of the 21-kD and 26-kD gap junction proteins in murine liver and cultured hepatocytes. J Cell Biol 1989; 108:1039–1051.

    Article  PubMed  CAS  Google Scholar 

  42. Barrio LC, Suchyna T, Bargiello T et al. Gap junctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage. Proc Natl Acad Sci USA 1991; 88:8410–8414.

    Article  PubMed  CAS  Google Scholar 

  43. Berridge MJ, Dawson RM, Downes CP et al. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J 1983; 212:473–482.

    PubMed  CAS  Google Scholar 

  44. Allbritton NL, Meyer T, Stryer L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 1992; 258:1812–1815.

    Article  PubMed  CAS  Google Scholar 

  45. Streb H, Irvine RF, Berridge MJ et al. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 1983; 306:67–69.

    Article  PubMed  CAS  Google Scholar 

  46. Irvine RF. 20 Years of ins(l,4,5)p3, and 40 years before. Nat Rev Mol Cell Biol 2003; 4:586–590.

    PubMed  CAS  Google Scholar 

  47. Cornell-Bell AH, Finkbeiner SM, Cooper MS et al. Glutamate induces calcium waves in cultured astrocytes: Long-range glial signaling. Science 1990; 247:470–473.

    Article  PubMed  CAS  Google Scholar 

  48. Osipchuk Y, Cahalan M. Cell-to-cell spread of calcium signals mediated by ATP receptors in mast cells. Nature 1992; 359:241–244.

    Article  PubMed  CAS  Google Scholar 

  49. Hassinger TD, Guthrie PB, Atkinson PB et al. An extracellular signaling component in propaga tion of astrocytic calcium waves. Proc Natl Acad Sci USA 1996; 93:13268–13273.

    Article  PubMed  CAS  Google Scholar 

  50. Schuster S, Marhl M, Hofer T. Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. Eur J Biochem 2002; 269:1333–1355.

    Article  PubMed  CAS  Google Scholar 

  51. Charles AC, Naus CC, Zhu D et al. Intercellular calcium signaling via gap junctions in glioma cells. J Cell Biol 1992; 118:195–201.

    Article  PubMed  CAS  Google Scholar 

  52. Sneyd J, Charles AC, Sanderson MJ. A model for the propagation of intercellular calcium waves. Am J Physiol 1994; 266:C293–302.

    PubMed  CAS  Google Scholar 

  53. Sneyd J, Wetton BT, Charles AC et al. Intercellular calcium waves mediated by diffusion of inositol trisphosphate: A two-dimensional model. Am J Physiol 1995; 268:C1537–1545.

    PubMed  CAS  Google Scholar 

  54. Robb-Gaspers LD, Thomas AP. Coordination of Ca2+ signaling by intercellular propagation of Ca2+ waves in the intact liver. J Biol Chem 1995; 270:8102–8107.

    Article  PubMed  CAS  Google Scholar 

  55. Sanderson MJ, Charles AC, Boitano S et al. Mechanisms and function of intercellular calcium signaling. Mol Cell Endocrinol 1994; 98:173–187.

    Article  PubMed  CAS  Google Scholar 

  56. Carmignoto G. Reciprocal communication systems between astrocytes and neurones. Prog Neurobiol 2000; 62:561–581.

    Article  PubMed  CAS  Google Scholar 

  57. Churchill GC, Louis CF. Roles of Ca2+, inositol trisphosphate and cyclic adp-ribose in mediating intercellular Ca2+ signaling in sheep lens cells. J Cell Sci 1998; 111:1217–1225.

    PubMed  CAS  Google Scholar 

  58. Brissette JL, Kumar NM, Gilula NB et al. Switch in gap junction protein expression is associated with selective changes in junctional permeability during keratinocyte differentiation. Proc Natl Acad Sci USA 1994; 91:6453–6457.

    Article  PubMed  CAS  Google Scholar 

  59. Gerido DA, White TW. Connexin disorders of the ear, skin, and lens. Biochim Biophys Acta 2004; 1662:159–170.

    Article  PubMed  CAS  Google Scholar 

  60. Richard G, Smith LE, Bailey RA et al. Mutations in the human connexin gene GJB3 cause erythrokeratodermia variabilis. Nat Genet 1998; 20:366–369.

    Article  PubMed  CAS  Google Scholar 

  61. Kelsell DP, Di WL, Houseman MJ. Connexin mutations in skin disease and hearing loss. Am J Hum Genet 2001; 68:559–568.

    Article  PubMed  CAS  Google Scholar 

  62. Richard G. Connexin disorders of the skin. Adv Dermatol 2001; 17:243–277.

    PubMed  CAS  Google Scholar 

  63. Lamartine J, Munhoz Essenfelder G, Kibar Z et al. Mutations in GJB6 cause hidrotic ectodermal dysplasia. Nat Genet 2000; 26:142–144.

    Article  PubMed  CAS  Google Scholar 

  64. Common JE, Becker D, Di W L et al. Functional studies of human skin disease-and deafness-associated connexin 30 mutations. Biochem Biophys Res Commun 2002; 298:651–656.

    Article  PubMed  CAS  Google Scholar 

  65. White TW, Paul DL. Genetic diseases and gene knockouts reveal diverse connexin functions. Annu Rev Physiol 1999; 61:283–310.

    Article  PubMed  CAS  Google Scholar 

  66. Bergoffen J, Scherer SS, Wang S et al. Connexin mutations in x-linked charcot-marie-tooth disease. Science 1993; 262:2039–2042.

    Article  PubMed  CAS  Google Scholar 

  67. Oh S, Ri Y, Bennett MV et al. Changes in permeability caused by connexin 32 mutations underlie x-linked charcot-marie-tooth disease. Neuron 1997; 19:927–938.

    Article  PubMed  CAS  Google Scholar 

  68. Balice-Gordon RJ, Bone LJ, Scherer SS. Functional gap junctions in the schwann cell myelin sheath. J Cell Biol 1998; 142:1095–1104.

    Article  PubMed  CAS  Google Scholar 

  69. Lopez-Bigas N, Olive M, Rabionet R et al. Connexin 31 (GJB3) is expressed in the peripheral and auditory nerves and causes neuropathy and hearing impairment. Hum Mol Genet 2001; 10:947–952.

    Article  PubMed  CAS  Google Scholar 

  70. White TW, Goodenough DA, Paul DL. Targeted ablation of connexin50 in mice results in microphthalmia and zonular pulverulent cataracts. J Cell Biol 1998; 143:815–825.

    Article  PubMed  CAS  Google Scholar 

  71. White TW, Bruzzone R. Gap Junctions: Fates Worse Than Death? Curr Biol 2000; 10:R685–688.

    Article  PubMed  CAS  Google Scholar 

  72. Martinez-Wittinghan FJ, Sellitto C, Li L et al. Dominant cataracts result from incongruous mixing of wild-type lens connexins. J Cell Biol 2003; 161:969–978.

    Article  PubMed  CAS  Google Scholar 

  73. Petit C, Levilliers J, Hardelin JP. Molecular genetics of hearing loss. Annu Rev Genet 2001; 35:589–646.

    Article  PubMed  CAS  Google Scholar 

  74. Xia JH, Liu CY, Tang BS et al. Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat Genet 1998; 20:370–373.

    Article  PubMed  CAS  Google Scholar 

  75. Grifa A, Wagner CA, D’ambrosio L et al. Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet 1999; 23:16–18.

    PubMed  CAS  Google Scholar 

  76. Kikuchi T, Adams JC, Paul DL et al. Gap junction systems in the rat vestibular labyrinth: Immunohistochemical and ultrastructural analysis. Acta Otolaryngol 1994; 114:520–528.

    PubMed  CAS  Google Scholar 

  77. Kikuchi T, Kimura RS, Paul DL et al. Gap junctions in the rat cochlea: Immunohistochemical and ultrastructural analysis. Anat Embryol (Berl) 1995; 191:101–118.

    Article  PubMed  CAS  Google Scholar 

  78. Forge A, Marziano NK, Casalotti SO et al. The inner ear contains heteromeric channels composed of Cx26 and Cx30 and deafness-related mutations in Cx26 have a dominant negative effect on Cx30. Cell Commun Adhes 2003; 10:341–346.

    Article  PubMed  CAS  Google Scholar 

  79. Rabionet R, Gasparini P, Estivill X. Molecular genetics of hearing impairment due to mutations in gap junction genes encoding beta connexins. Hum Mutat 2000; 16:190–202.

    Article  PubMed  CAS  Google Scholar 

  80. Dahl E, Manthey D, Chen Y et al. Molecular cloning and functional expression of mouse connexin-30, a gap junction gene highly expressed in adult brain and skin. J Biol Chem 1996; 271:17903–17910.

    Article  PubMed  CAS  Google Scholar 

  81. Kelley PM, Abe S, Askew JW et al. Human connexin 30 (GJB6), a candidate gene for nonsyndromic hearing loss: molecular cloning, tissue-specific expression, and assignment to chromosome 13q12. Genomics 1999; 62:172–176.

    Article  PubMed  CAS  Google Scholar 

  82. Richard G. Connexin gene pathology. Clin Exp Dermatol 2003; 28:397–409.

    Article  PubMed  CAS  Google Scholar 

  83. Chaib H, Lina-Granade G, Guilford P et al. A gene responsible for a dominant form of neurosensory nonsyndromic deafness maps to the NSRD1 recessive deafness gene interval. Hum Mol Genet 1994; 3:2219–2222.

    Article  PubMed  CAS  Google Scholar 

  84. Abe S, Kelley PM, Kimberling WJ et al. Connexin 26 gene (GJB2) mutation modulates the sever ity of hearing loss associated with the 1555a→G mitochondrial mutation. Am J Med Genet 2001; 103:334–338.

    Article  PubMed  CAS  Google Scholar 

  85. Forge A, Becker D, Casalotti S et al. Gap junctions in the inner ear: Comparison of distribution patterns in different vertebrates and assessement of connexin composition in mammals. J Comp Neurol 2003; 467:207–231.

    Article  PubMed  Google Scholar 

  86. Buniello A, Montanaro D, Volinia S et al. An expression atlas of connexin genes in the mouse. Genomics 2004; 83:812–820.

    Article  PubMed  CAS  Google Scholar 

  87. Cohen-Salmon M, Maxeiner S, Kruger O et al. Expression of the connexin43-and connexin45-encoding genes in the developing and mature mouse inner ear. Cell Tissue Res 2004; 316:15–22.

    Article  PubMed  CAS  Google Scholar 

  88. Stojkovic T, Latour P, Vandenberghe A et al. Sensorineural Deafness In X-linked Charcot-Marie-Tooth Disease With Connexin 32 Mutation (Rl42q). Neurology 1999; 52:1010–1014.

    PubMed  CAS  Google Scholar 

  89. Liu XZ, Xia XJ, Xu LR et al. Mutations in connexin31 underlie recessive as well as dominant nonsyndromic hearing loss. Hum Mol Genet 2000; 9:63–67.

    Article  PubMed  CAS  Google Scholar 

  90. Liu XZ, Xia XJ, Adams J et al. Mutations in GJA1 (Connexin 43) are associated with nonsyndromic autosomal recessive deafness. Hum Mol Genet 2001; 10:2945–2951.

    Article  PubMed  CAS  Google Scholar 

  91. Gabriel HD, Jung D, Butzler C et al. Transplacental uptake of glucose is decreased in embryonic lethal connexin26-deficient mice. J Cell Biol 1998; 140:1453–1461.

    Article  PubMed  CAS  Google Scholar 

  92. Cohen-Salmon M, Ott T, Michel V et al. Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol 2002; 12:1106–1111.

    Article  PubMed  CAS  Google Scholar 

  93. Lautermann J, Ten Cate WJ, Altenhoff P et al. Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res 1998; 294:415–420.

    Article  PubMed  CAS  Google Scholar 

  94. Valiunas V, Manthey D, Vogel R et al. Biophysical properties of mouse connexin30 gap junction channels studied in transfected human hela cells. J Physiol 1999; 519:631–644.

    Article  PubMed  CAS  Google Scholar 

  95. Teubner B, Michel V, Pesch J et al. Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Genet 2003; 12:13–21.

    Article  PubMed  CAS  Google Scholar 

  96. Jentsch TJ. Neuronal KCNQ potassium channels: Physiology and role in disease. Nat Rev Neurosci 2000; 1:21–30.

    Article  PubMed  CAS  Google Scholar 

  97. Gale JE, Piazza V, Ciubotaru CD et al. A mechanism for sensing noise damage in the inner ear. Curr Biol 2004; 14:526–529.

    Article  PubMed  CAS  Google Scholar 

  98. Bruzzone R, Hormuzdi SG, Barbe MT et al. Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci USA 2003; 100:13644–13649.

    Article  PubMed  CAS  Google Scholar 

  99. Baranova A, Ivanov D, Petrash N et al. The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics 2004; 83:706–716.

    Article  PubMed  CAS  Google Scholar 

  100. Bruzzone R, Barbe MT, Jakob NJ et al. Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in xenopus oocytes. J Neurochem 2005; 92:1033–1043.

    Article  PubMed  CAS  Google Scholar 

  101. Bao L, Locovei S, Dahl G. Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 2004; 572:65–68.

    Article  PubMed  CAS  Google Scholar 

  102. Beltramello M, Bicego M, Piazza V et al. Permeability and gating properties of human connexins 26 and 30 expressed in HeLa cells. Biochem Biophys Res Commun 2003; 305:1024–1033.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Mammano, F. (2006). Gap Junctions. In: Cell-Cell Channels. Springer, New York, NY. https://doi.org/10.1007/978-0-387-46957-7_13

Download citation

Publish with us

Policies and ethics