Skip to main content

Part of the book series: ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY ((AEMB,volume 595))

Abstract

This overview presents curcumin as a significant chemosensitizer in cancer chemotherapy. Although the review focuses on curcumin and its analogues on multidrug resistance (MDR) reversal, the relevance of curcumin as a nuclear factor (NF)-κB blocker and sensitizer of many chemoresistant cancer cell lines to chemotherapeutic agents will also be discussed. One of the major mechanisms of MDR is the enhanced ability of tumor cells to actively efflux drugs, leading to a decrease in cellular drug accumulation below toxic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. H. Lage, ABC-transporters: Implications on drug resistance from microorganisms to human cancers. Int J Antimicrob Agents 22, 188 (2003).

    PubMed  CAS  Google Scholar 

  2. 2. T. Tsuruo, H. Iida, S. Tsukagoshi, and Y. Sakurai, Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 41, 1967 (1981).

    PubMed  CAS  Google Scholar 

  3. 3. H. A. Bardelmeijer, J. H. Beijnen, K. R. Brouwer, H. Rosing, W. J. Nooijen, J. H. Schellens, Jand O. van Tellingen, Increased oral bioavailability of paclitaxel by GF120918 in mice through selective modulation of P-glycoprotein. Clin Cancer Res 6, 4416 (2000).

    PubMed  CAS  Google Scholar 

  4. 4. L. J. Green, P. Marder, and C. A. Slapak, Modulation by LY335979 of P-glycoprotein function in multidrug-resistant cell lines and human natural killer cells. Biochem Pharmacol 61, 1393 (2001).

    PubMed  CAS  Google Scholar 

  5. 5. A. L. Cheng, C. H. Hsu, J. K. Lin, M. M. Hsu, Y. F. Ho, T. S. Shen, J. Y. Ko, J. T. Lin, B. R. Lin, W. Ming-Shiang, H. S. Yu, S. H. Jee, G. S. Chen, T. M. Chen, C. A. Chen, M. K. Lai, Y. S. Pu, M. H. Pan, Y. J. Wang, C. C. Tsai, and C. Y. Hsieh, Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21, 2895 (2001).

    PubMed  CAS  Google Scholar 

  6. 6. M Notarbartolo, P. Poma, D. Perri, L. Dusonchet, M. Cervello, and N. D'Alessandro, Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-kB activation levels and in IAP gene expression. Cancer Lett 224, 53 (2005).

    PubMed  CAS  Google Scholar 

  7. 7. B. Hill, Drug resistance, and overview of the current state of the art. Int J Oncol 9, 197 (1996).

    CAS  Google Scholar 

  8. 8. P. S. Lacombe, J. A. G. Vicente, J. G. Pages, and P. L. Morselli, Causes and problems of nonresponse or poor response to drugs. Drugs 51, 552 (1996).

    CAS  Google Scholar 

  9. 9. L. J. Goldstein, MDR1 gene expression in solid tumours. Eur J Cancer 32A(6), 1039 (1996).

    PubMed  CAS  Google Scholar 

  10. 10. M. Volmand J. Mattern, Resistance mechanisms and their regulation in lung cancer. Crit Rev Oncog 7, 227 (1996).

    Google Scholar 

  11. 11. M. Dietel, What's new in cytostatic drug resistance and pathology. Pathol Res Pract 187, 892 (1991).

    PubMed  CAS  Google Scholar 

  12. 12. W. T. Beck, Mechanisms of multidrug resistance in human tumor cells. The roles of P-glycoprotein, DNA topoisomerase II, and other factors. Cancer Treat Rev 17(Suppl A), 11 (1990).

    PubMed  CAS  Google Scholar 

  13. 13. C. S. Morrow and K. H. Cowan, Glutathione S-transferases and drug resistance. Cancer Cells 2, 15 (1990).

    PubMed  CAS  Google Scholar 

  14. 14. J. R. Hammond, R. M. Johnstone, and P. Gros, Enhanced efflux of [3H]vinblastine from Chinese hamster ovary cells transfected with a full-length complementary DNA clone for the mdr1 gene. Cancer Res 49, 3867 (1989).

    PubMed  CAS  Google Scholar 

  15. 15. Y. A. Hannun, Apoptosis and the dilemma of cancer chemotherapy. Blood 89, 1845 (1997).

    PubMed  CAS  Google Scholar 

  16. 16. Y. Y. Liu, T. Y. Han, A. E. Giuliano, and M. C. Cabot, Ceramide glycosylation potentiates cellular multidrug resistance. FASEB J 15, 719 (2001).

    PubMed  CAS  Google Scholar 

  17. 17. R. L. Juliano and V. Ling, A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455, 152 (1976).

    PubMed  CAS  Google Scholar 

  18. 18. D. Nielson, C. Maare, and T. Skovsgaard, Influx of daunorubicin in multidrug resistance Erlich ascites tumor cells, correlation to expression of P-glycoprotein and efflux. Influence of verapamil. Biochem Pharmacol 50, 443 (1995).

    Google Scholar 

  19. 19. A. R. Safa, Photoaffinity labeling of p-glycoprotein in multidrug resistance cells. Cancer Invest 10, 295 (1992).

    CAS  Google Scholar 

  20. 20. R. G. Deeley and S. P. Cole, Function, evolution and structure of multidrug resistance protein (MRP). Semin Cancer Biol 8, 193 (1997).

    PubMed  CAS  Google Scholar 

  21. 21. D. D. Ross, W. Yang, L. V. Abruzzo, W. S. Dalton, E. Schneider, H. Lage, M. Dietel, L. Greenberger, S. P. Cole, and L. A. Doyle, Atypical multidrug resistance: Breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. J Natl Cancer Inst 91, 429 (1999).

    PubMed  CAS  Google Scholar 

  22. 22. Z. E. Sauna, M. M. Smith, M. Muller, K. M. Kerr, and S. V. Ambudkar, The mechanism of action of multidrug-resistance-linked P-glycoprotein. J Bioenerg Biomembr 33, 481 (2001).

    PubMed  CAS  Google Scholar 

  23. 23. T. Litman, T. E. Druley, W. D. Stein, and S. E. Bates, From MDR to MXR: New understanding of multidrug resistance systems, their properties and clinical significance. Cell Mol Life Sci 58, 931 (2001).

    PubMed  CAS  Google Scholar 

  24. 24. J. C. Leighton, Jr. and L. J. Goldstein, P-Glycoprotein in adultsolid tumors. Expression and prognostic significance. Hematol Oncol Clin North Am 9, 251 (1995).

    PubMed  Google Scholar 

  25. 25. J. P. Marie, P-Glycoprotein in adult hematologic malignancies. Hematol Oncol Clin North Am 9, 239 (1995).

    PubMed  CAS  Google Scholar 

  26. 26. R. J. Arceci, Clinical significance of P-glycoprotein in multidrug resistance malignancies. Blood 81, 2215 (1993).

    PubMed  CAS  Google Scholar 

  27. 27. R. Pirker, J. Wallner, K. Geissler, W. Linkesch, O. A. Haas, P. Bettelheim, M. Hopfner, R. Scherrer, P. Valent, L. Havelec, et al., MDR1 gene expression and treatment outcome in acute myeloid leukemia. J Natl Cancer Inst. 83, 708 (1991).

    PubMed  CAS  Google Scholar 

  28. 28. H. S. Chan, P. S. Thorner, G. Haddad, and V. Ling, Immunohistochemical detection of P-glycoprotein: Prognostic correlation in soft tissue sarcoma of childhood. J Clin Oncol 8, 689 (1990).

    PubMed  CAS  Google Scholar 

  29. 29. R. S. Weinstein, S. M. Jakate, J. M. Dominguez, M. D. Lebovitz, G. K. Koukoulis, J. R. Kuszak, L. F. Klusens, T. M. Grogan, T. J. Saclarides, I. B. Roninson, et al., Relationship of the expression of the multidrug resistance gene product (P-glycoprotein) in human colon carcinoma to local tumor aggressiveness and lymph node metastasis. Cancer Res. 51, 2720 (1991).

    PubMed  CAS  Google Scholar 

  30. 30. S. W. Tobe, S. E. Noble-Topham, I. L. Andrulis, R. W. Hartwick, K. L. Skorecki, and E. Warner, Expression of the multiple drug resistance gene in human renal cell carcinoma depends on tumor histology, grade, and stage. Clin Cancer Res 1, 1611 (1995).

    PubMed  CAS  Google Scholar 

  31. 31. G. Giaccone, S. C. Linn, and H. M. Pinedo, Multidrug resistance in breast cancer, mechanisms, strategies. Eur J Cancer 31A(Suppl 7), S15 (1995).

    PubMed  Google Scholar 

  32. 32. H. M. Pinedo and G. Giaccone, P-Glycoprotein: A marker of cancer-cell behavior. N Engl J Med 333, 1417 (1995).

    PubMed  CAS  Google Scholar 

  33. 33. J. L. Biedler, Genetic aspects of multidrug resistance. Cancer 70, 1799 (1992).

    PubMed  CAS  Google Scholar 

  34. 34. M. Lehnert, Clinical multidrug resistance in cancer: A multifactorial problem. Eur J Cancer 32A, 912 (1996).

    PubMed  CAS  Google Scholar 

  35. 35. E. Buschman, R. J. Arceci, J. M. Croop, M. Che, I. M. Arias, D. E. Housman, and P. Gros, mdr2 encodes P-glycoprotein expressed in the bile canalicular membrane as determined by isoform-specific antibodies. J Biol Chem 267, 18,093 (1992).

    CAS  Google Scholar 

  36. 36. C. Cordon-Cardo, J. P. O'Brien, J. Boccia, D. Casals, J. R. Bertino, and M. R. Melamed, Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem 38, 1277 (1990).

    PubMed  CAS  Google Scholar 

  37. 37. J. J. Smit, A. H. Schinkel, C. A. Mol, D. Majoor, W. J. Mooi, A. P. Jongsma, C. R. Lincke, and P. Borst, Tissue distribution of the human MDR3 P-glycoprotein. Lab Invest 71, 638 (1994).

    PubMed  CAS  Google Scholar 

  38. 38. M. M. Gottesman and I. Pastan, Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62, 385 (1993).

    PubMed  CAS  Google Scholar 

  39. 39. F. Frezard, E. Pereira-Maia, P. Quidu, W. Priebe, and A. Garnier-Suillerot, P-Glycoprotein preferentially effluxes anthracyclines containing free basic versus charged amine. Eur J Biochem 268, 1561 (2001).

    PubMed  CAS  Google Scholar 

  40. 40. U. Brinkmann, I. Roots, and M. Eichelbaum, Pharmacogenetics of the human drug-transporter gene MDR1: Impact of polymorphisms on pharmacotherapy. Drug Discov Today 6, 835 (2001).

    PubMed  CAS  Google Scholar 

  41. 41. P. Gros and C. Shustik, Multidrug resistance: A novel class of membrane-associated transport proteins is identified. Cancer Invest 9, 563 (1991).

    PubMed  CAS  Google Scholar 

  42. 42. M. M. Cornwell, I. Pastan, and M. M. Gottesman, Certain calcium channel blockers bind specifically to multidrug-resistant human KB carcinoma membrane vesicles and inhibit drug binding to P-glycoprotein. J Biol Chem 262, 2166 (1987).

    PubMed  CAS  Google Scholar 

  43. 43. T. W. Loo and D. M. Clarke, Functional consequences of glycine mutations in the predicted cytoplasmic loops of P-glycoprotein. J Biol Chem 269, 7243 (1994).

    PubMed  CAS  Google Scholar 

  44. 44. F. J. Sharom, X. Yu, and C. A. Doige, Functional reconstitution of drug transport and ATPase activity in proteoliposomes containing partially purified P-glycoprotein. J Biol Chem 268, 24,197 (1993).

    CAS  Google Scholar 

  45. 45. P. M. Jones and A. M. George, A new structural model for P-glycoprotein. J Membr Biol 166, 133 (1998).

    PubMed  CAS  Google Scholar 

  46. 46. K. Ueda, A. Yoshida, and T. Amachi, Recent progress in P-glycoprotein research. Anticancer Drug Des 14, 115 (1999).

    PubMed  CAS  Google Scholar 

  47. 47. A. F. Castro, J. K. Horton, C. G. Vanoye, and G. A. Altenberg, Mechanism of inhibition of P-glycoprotein-mediated drug transport by protein kinase C blockers. Biochem Pharmacol 58, 1723 (1999).

    PubMed  CAS  Google Scholar 

  48. 48. G. Conseil, J. M. Perez-Victoria, J. M. Jault, F. Gamarro, A. Goffeau, J. Hofmann, and A. Di Pietro, Protein kinase C effectors bind to multidrug ABC transporters and inhibit their activity. Biochemistry 40, 2564 (2001).

    PubMed  CAS  Google Scholar 

  49. 49. H. Yabuuchi, S. Takayanagi, K. Yoshinaga, N. Taniguchi, H. Aburatani and T. Ishikawa, ABCC13, an unusual truncated ABC transporter, is highly expressed in fetal human liver. Biochem Biophys Res Common 299, 410 (2002).

    CAS  Google Scholar 

  50. 50. A. C. Lockhart, R. G. Tirona, and R. B. Kim, Pharmacogenetics of ATP-binding cassette transporters in cancer and chemotherapy. Mol Cancer Ther 2, 685 (2003).

    PubMed  CAS  Google Scholar 

  51. 51. S. P. Cole, G. Bhardwaj, J. H. Gerlach, J. E. Mackie, C. E. Grant, K. C. Almquist, A. J. Stewart, E. U. Kurz, A. M. Duncan, and R. G. Deeley, Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258, 1650 (1992).

    PubMed  CAS  Google Scholar 

  52. 52. P. Borst, R. Evers, M. Kool, and J. Wijnholds, A family of drug transporters: The multidrug resistance-associated proteins. J Natl Cancer Inst 92, 1295 (2000).

    PubMed  CAS  Google Scholar 

  53. 53. D. R. Hipfner, R. G. Deeley, and S. P. Cole, Structural, mechanistic and clinical aspects of MRP1. Biochim Biophys Acta 1461, 359 (1999).

    PubMed  CAS  Google Scholar 

  54. 54. J. Renes, E. G. de Vries, E. F. Nienhuis, P. L. Jansen, and M. Muller, ATP- and glutathione-dependent transport of chemotherapeutic drugs by the multidrug resistance protein MRP1. Br J Pharmacol 126, 681 (1999).

    PubMed  CAS  Google Scholar 

  55. 55. G. Rappa, A. Lorico, R. A. Flavell, and A. C. Sartorelli, Evidence that the multidrug resistance protein (MRP) functions as a co-transporter of glutathione and natural product toxins. Cancer Res 57, 5232 (1997).

    PubMed  CAS  Google Scholar 

  56. 56. L. Manciu, X. B. Chang, J. R. Riordan, and J. M. Ruysschaert, Multidrug resistance protein MRP1 reconstituted into lipid vesicles: Secondary structure and nucleotide-induced tertiary structure changes. Biochemistry 39, 13,026 (2000).

    CAS  Google Scholar 

  57. 57. E. M. Leslie, R. G. Deeley, and S. P. Cole, Multidrug resistance proteins, role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 204, 216 (2005).

    PubMed  CAS  Google Scholar 

  58. 58. A. Haimeur, G. Conseil, R. G. Deeley, and S. P. Cole, The MRP-related and BCRP/ABCG2 multidrug resistance proteins: Biology, substrate specificity and regulation. Curr Drug Metab 5, 21 (2004).

    PubMed  CAS  Google Scholar 

  59. 59. M. Gao, H. R. Cui, D. W. Loe, C. E. Grant, K. C. Almquist, S. P. Cole, and R. G. Deeley, Comparison of the functional characteristics of the nucleotide binding domains of multidrug resistance protein 1. J Biol Chem 275, 13,098 (2000).

    CAS  Google Scholar 

  60. 60. K. Nagata, M. Nishitani, M. Matsuo, N. Kioka, T. Amachi, and K. Ueda, Nonequivalent nucleotide trapping in the two nucleotide binding folds of the human multidrug resistance protein MRP1. J Biol Chem 275, 17,626 (2000).

    CAS  Google Scholar 

  61. 61. K. Barnouin, I. Leier, G. Jedlitschky, A. Pourtier-Manzanedo, J. Konig, W. D. Lehmann, and D. Keppler, Multidrug resistance protein-mediated transport of chlorambucil and melphalan conjugated to glutathione. Br J Cancer 77, 201 (1998).

    PubMed  CAS  Google Scholar 

  62. 62. N. Ballatori, C. L. Hammond, J. B. Cunningham, S. M. Krance, and R. Marchan, Molecular mechanisms of reduced glutathione transport: Role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteins. Toxicol Appl Pharmacol 204, 238 (2005).

    PubMed  CAS  Google Scholar 

  63. 63. K. Miyake, L. Mickley, T. Litman, Z. Zhan, R. Robey, B. Cristensen, M. Brangi, L. Greenberger, M. Dean, T. Fojo, and S. E. Bates, Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: Demonstration of homology to ABC transport genes. Cancer Res 59, 8 (1999).

    PubMed  CAS  Google Scholar 

  64. 64. L. A. Doyle and D. D. Ross, Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 22, 7340 (2003).

    PubMed  Google Scholar 

  65. 65. R. Allikmets, L. M. Schriml, A. Hutchinson, V. Romano-Spica, and M. Dean, A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res 58, 5337 (1998).

    PubMed  CAS  Google Scholar 

  66. 66. S. E. Bates, R. Robey, K. Miyake, K. Rao, D. D. Ross, and T. Litman, The role of half-transporters in multidrug resistance. J Bioenerg Biomembr 33, 503 (2001).

    PubMed  CAS  Google Scholar 

  67. 67. Y. Honjo, C. A. Hrycyna, Q. W. Yan, W. Medina-Perez, R. W. Robey, A. van de Laar, T. Litman, M. Dean, and S. E. Bates, Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Res 61, 6635 (2001).

    PubMed  CAS  Google Scholar 

  68. 68. R. W. Robey, Y. Honjo, K. Morisaki, T. A. Nadjem, S. Runge, M. Risbood, M. S. Poruchynsky, and S. E. Bates, Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity. Br J Cancer 89, 1971 (2003).

    PubMed  CAS  Google Scholar 

  69. 69. M. Miwa, S. Tsukahara, E. Ishikawa, S. Asada, Y. Imai, and Y. Sugimoto, Single amino acid substitutions in the transmembrane domains of breast cancer resistance protein (BCRP) alter cross resistance patterns in transfectants. Int J Cancer 107(5), 757 (2003).

    PubMed  CAS  Google Scholar 

  70. 70. S. Kawabata, M. Oka, K. Shiozawa, K. Tsukamoto, K. Nakatomi, H. Soda, M. Fukuda, Y. Ikegami, K. Sugahara, Y. Yamada, S. Kamihira, L. A. Doyle, D. D. Ross, and S. Kohno, Breast cancer resistance protein directly confers SN-38 resistance of lung cancer cells. Biochem Biophys Res Commun 280, 1216 (2001).

    PubMed  CAS  Google Scholar 

  71. 71. Q. Mao and J. D. Unadkat, Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J 7, E118 (2005).

    PubMed  CAS  Google Scholar 

  72. 72. M. C. Raff, Social controls on cell survival and cell death. Nature 356, 397 (1993).

    Google Scholar 

  73. 73. E. Ruoslahti and J. C. Reed, Anchorage dependence, integrins, and apoptosis. Cell 77, 477 (1994).

    PubMed  CAS  Google Scholar 

  74. 74. S. M. Frisch and H. Francis, Disruption of epithelial cell–matrix interactions induces apoptosis. J Cell Biol 124, 619 (1994).

    PubMed  CAS  Google Scholar 

  75. 75. E. A. Harrington M. R. Bennett, A. Fanidi, and G. I. Evan, c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J 13, 3286 (1994).

    PubMed  CAS  Google Scholar 

  76. 76. S. Nagata, Apoptosis regulated by a death factor and its receptor, Fas ligand and Fas. Phil Trans R Soc Lond B: Biol Sci 345, 281 (1994).

    CAS  Google Scholar 

  77. 77. C. Dive and J. A. Hickman, JDrug-target interactions: Only the first step in the commitment to a programmed cell death? Br J Cancer 64,192 (1991).

    PubMed  CAS  Google Scholar 

  78. 78. D. E. Fisher, Apoptosis in cancer therapy: Crossing the threshold. Cell 78, 539–542 (1994).

    PubMed  CAS  Google Scholar 

  79. 79. D. Hockenbery, G. Nunez, C. Milliman, R. D. Schreiber, and S. I. Korsmeyer, Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348, 334 (1990).

    PubMed  CAS  Google Scholar 

  80. 80. J. C. Reed, Bcl-2 and the regulation of programmed cell death. J Cell Biol 124, 1 (1994).

    PubMed  CAS  Google Scholar 

  81. 81. X. M. Yin, Z. N. Oltvai, and S. J. Korsmeyer, BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369, 321 (1994).

    PubMed  CAS  Google Scholar 

  82. 82. E. Yang, J. Zha, J. Jockel, L. H. Boise, C. B. Thompson, and S. J. Korsmeyer, Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80, 285 (1995).

    PubMed  CAS  Google Scholar 

  83. 83. M. C. Kiefer, M. J. Brauer, V. C. Powers, J. J. Wu, S. R. Umansky, L. D. Tomei, and P. J. Barr, Modulation of apoptosis by the widely distributed Bcl-2 homologue Bak. Nature 374, 736 (1995).

    PubMed  CAS  Google Scholar 

  84. 84. S. N. Farrow, J. H. White, I. Martinou, T. Raven, K. T. Pun, C. J. Grinham, J. C. Martinou, and R. Brown, Cloning of a bcl-2 homologue by interaction with adenovirus E1B 19K. Nature 374, 731 (1995).

    PubMed  CAS  Google Scholar 

  85. 85. T. Chittenden, E. A. Harrington, R. O'Connor, C. Flemington, R. J. Lutz, G. I. Evan, and B. C. Guild, Induction of apoptosis by the Bcl-2 homologue Bak. Nature 374, 733 (1995).

    PubMed  CAS  Google Scholar 

  86. 86. D. T. Chao, G. P. Linette, L. H. Boise, L. S. White, C. B. Thompson, and S. J. Korsmeyer, Bcl-XL and Bcl-2 repress a common pathway of cell death. J Exp Med 182, 821 (1995).

    PubMed  CAS  Google Scholar 

  87. 87. A. R. Gottschalk, L. H. Boise, C. B. Thompson, and J. Quintans, Identification of immunosuppressant-induced apoptosis in a murine B-cell line and its prevention by bcl-x but not bcl-2. Proc Natl Acad Sci USA 91, 7350 (1994).

    PubMed  CAS  Google Scholar 

  88. 88. V. N. Sumantran, M. W. Ealovega, G. Nunez, M. F. Clarke, and M. S. Wicha, Overexpression of Bcl-XS sensitizes MCF-7 cells to chemotherapy-induced apoptosis. Cancer Res 55, 2507 (1995).

    PubMed  CAS  Google Scholar 

  89. 89. A. R. Clarke, C. A. Purdie, D. J. Harrison, R. G. Morris, C. C. Bird, M. L. Hooper, and A. H. Wyllie, Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature. 362, 849 (1993).

    PubMed  CAS  Google Scholar 

  90. 90. S. W. Lowe, E. M. Schmitt, S. W. Smith, B. A. Osborne, and T. Jacks, p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847 (1993).

    PubMed  CAS  Google Scholar 

  91. 91. A. J. Merritt, C. S. Potten, C. J. Kemp, J. A. Hickman, A. Balmain, D. P. Lane, and P. A. Hall, The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res 54, 614 (1994).

    PubMed  CAS  Google Scholar 

  92. 92. V. Sandor, T. Fojo, and E. Bates, Future perspectives for the development of P-glycoprotein modulators. Drug Resist Up-dates. 1, 190 (1998).

    CAS  Google Scholar 

  93. 93. F. Gualtieri, Drugs reverting multidrug resistance (chemosenzitizers). Chim. Ind 78, 1233 (1996).

    Google Scholar 

  94. 94. T. J. Lampidis, A. Krishan, L. Planas, and H. Tapiero, Reversal of intrinsic resistance to adriamycin in normal cells by verapamil. Cancer Drug Deliv 3, 251 (1986).

    PubMed  CAS  Google Scholar 

  95. 95. E. C. Spoelstra, H. V. Westerhoff, H. M. Pinedo, H. Dekker, and J. Lankelma, The multidrug-resistance-reverser verapamil interferes with cellular P-glycoprotein-mediated pumping of daunorubicin as a non-competing substrate. Eur J Biochem 221, 363 (1994).

    PubMed  CAS  Google Scholar 

  96. 96. N. J. Chao, M. Aihara, K. G. Blume, and B. I. Sikic, Modulation of etoposide (VP-16) cytotoxicity by verapamil or cyclosporine in multidrug-resistant human leukemic cell lines and normal bone marrow. Exp Hematol 18, 1193 (1990).

    PubMed  CAS  Google Scholar 

  97. 97. C. Avendano and J. C. Menendez, Inhibitors of multidrug resistance to antitumor agents (MDR). Curr Med Chem 9, 159 (2002).

    PubMed  CAS  Google Scholar 

  98. 98. P. Atadja, T. Watanabe, H. Xu, and D. Cohen, PSC-833, a frontier in modulation of P-glycoprotein mediated multidrug resistance. Cancer Metastasis Rev 17, 163 (1998).

    PubMed  CAS  Google Scholar 

  99. 99. U. A. Germann, D. Shlyakhter, V. S. Mason, R. E. Zelle, J. P. Duffy, V. Galullo, D. M. Armistead, J. O. Saunders, J. Boger, and M. W. Harding, Cellular and biochemical characterization of VX-710 as a chemosensitizer: Reversal of P-glycoprotein-mediated multidrug resistance in vitro. Anticancer Drugs 8(2), 125 (1997).

    PubMed  CAS  Google Scholar 

  100. 100. R. Krishna and L. D. Mayer, Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 11, 265 (2000).

    PubMed  CAS  Google Scholar 

  101. 101. A. H. Dantzig, K. L. Law, J. Cao, and J. J. Starling, Reversal of multidrug resistance by the P-glycoprotein modulator, LY335979, from the bench to the clinic. Curr Med Chem 8, 39 (2001).

    PubMed  CAS  Google Scholar 

  102. 102. A. Stewart, J. Steiner, G. Mellows, B. Laguda, D. Norris, and P. Bevan, Phase I trial of XR9576 in healthy volunteers demonstrates modulation of P-glycoprotein in CD56/ lymphocytes after oral and intravenous administration. Clin Cancer Res 6, 4186 (2000).

    PubMed  CAS  Google Scholar 

  103. 103. B. Tan, D. Piwnica-Worms, and L. Ratner, Multidrug resistance transporters and modulation. Curr Opin Oncol 12, 450 (2000).

    PubMed  CAS  Google Scholar 

  104. 104. L. Payen, L. Delugin, A. Courtois, Y. Trinquart, A. Guillouzo, and O. Fardel, The sulphonylurea glibenclamide inhibits multidrug resistance protein (MRP1) activity in human lung cancer cells. Br J Pharmacol 132, 778 (2001).

    PubMed  CAS  Google Scholar 

  105. 105. D. Burg, P. Wielinga, N. Zelcer, T. Saeki, G. J. Mulder, and P. Borst, Inhibition of the multidrug resistance protein 1 (MRP1) by peptidomimetic glutathione-conjugate analogs. Mol Pharmacol 62, 1160 (2002).

    PubMed  CAS  Google Scholar 

  106. 106. J. D. Allen, S. C. Van Dort, M. Buitelaar, O. van Tellingen, and A. H. Schinkel, Mouse breast cancer resistance protein (Bcrp1/Abcg2) mediates etoposide resistance and transport, but etoposide oral availability is limited primarily by P-glycoprotein. Cancer Res 63, 1339 (2003).

    PubMed  CAS  Google Scholar 

  107. 107. M. de Bruin, K. Miyake, T. Litman, R. Robey, and S. E. Bates, Reversal of resistance by GF120918 in cell lines expressing the ABC half-transporter, MXR. Cancer Lett 146, 117 (1999).

    PubMed  Google Scholar 

  108. 108. C. M. Kruijtzer, J. H. Beijnen, H. Rosing, W. W. ten Bokkel Huinink, M. Schot, R. C. Jewell, E. M. Paul, and J. H. Schellens, Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J Clin Oncol 20, 2943 (2002).

    PubMed  CAS  Google Scholar 

  109. 109. S. K. Rabindran, D. D. Ross, L. A. Doyle, W. Yang, and L. M. Greenberger, Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Res 60, 47 (2000).

    PubMed  CAS  Google Scholar 

  110. 110. A. Gupta, Y. Zhang, J. D. Unadkat, and Q. Mao, HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther 310, 334 (2004).

    PubMed  CAS  Google Scholar 

  111. 111. H. J. Broxterman, H. M. Pinedo, G. J. Schuurhuis, and J. Lankelma, Cyclosporin A and verapamil have different effects on energy metabolism in multidrug-resistant tumour cells. Br J Cancer 62, 85 (1990).

    PubMed  CAS  Google Scholar 

  112. 112. D. Cohen, Modulation of resistance and P-glycoprotein function in tumor cells. ′ATP Binding cassette (ABC) Transporter: From multidrug resistance to genetic disease. Abstract Book, 1997, p. 46.

    Google Scholar 

  113. 113. S. P. Cole, K. E. Sparks, K. Fraser, D. W. Loe, C. E. Grant, G. M. Wilson, and R. G. Deeley, Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res 54, 5902 (1994).

    PubMed  CAS  Google Scholar 

  114. 114. G. Jedlitschky, I. Leier, U. Buchholz, M. Center, and D. Keppler, ATP-dependent transport of glutathione S-conjugates by the multidrug resistance-associated protein. Cancer Res 54, 4833 (1994).

    PubMed  CAS  Google Scholar 

  115. 115. H. J. Broxterman, G. Giaccone, and J. Lankelma, Multidrug resistance proteins and other drug transport-related resistance to natural product agents. Curr Opin Oncol. 7, 532 (1995).

    PubMed  CAS  Google Scholar 

  116. 116. P. R. Twentyman and C. H. Versantvoort, Experimental modulation of MRP (multidrug resistance-associated protein)-mediated resistance. Eur J Cancer 32A, 1002 (1996).

    PubMed  CAS  Google Scholar 

  117. 117. M. K. al-Shawi and A. E. Senior, Characterization of the adenosine triphosphatase activity of Chinese hamster P-glycoprotein. J Biol Chem 268, 4197 (1993).

    PubMed  CAS  Google Scholar 

  118. 118. M. K. al-Shawi, I. L. Urbatsch, and A. E. Senior, Covalent inhibitors of P-glycoprotein ATPase activity. J Biol Chem 269, 8986 (1994).

    PubMed  CAS  Google Scholar 

  119. 119. A. B Shapiro and V. Ling, Effect of quercetin on Hoechst 33342 transport by purified and reconstituted P-glycoprotein. Biochem Pharmacol 53, 587 (1997).

    PubMed  CAS  Google Scholar 

  120. 120. S. V. Ambudkar, Purification and reconstitution of functional human P-glycoprotein. J Bioenerg Biomembr 27, 23 (1995).

    PubMed  CAS  Google Scholar 

  121. 121. D. M. Woodcock, S. Jefferson, M. E. Linsenmeyer, P. J. Crowther, G. M. Chojnowski, B. Williams, and I. Bertoncello, Reversal of the multidrug resistance phenotype with cremophor EL, a common vehicle for water-insoluble vitamins and drugs. Cancer Res 50, 4199 (1990).

    PubMed  CAS  Google Scholar 

  122. 122. K. Ueda, I. Pastan, and M. M. Gottesman, Isolation and sequence of the promoter region of the human multidrug-resistance (P-glycoprotein) gene. J Biol Chem 262, 17,432 (1987).

    CAS  Google Scholar 

  123. 123. Q. Zhu and M. S. Center, Cloning and sequence analysis of the promoter region of the MRP gene of HL60 cells isolated for resistance to adriamycin. Cancer Res 54, 4488 (1994).

    PubMed  CAS  Google Scholar 

  124. 124. R. Sundseth, G. MacDonald, J. Ting, and A. C. King, DNA elements recognizing NF-Y and Sp1 regulate the human multidrug-resistance gene promoter. Mol Pharmacol 51, 963 (1997).

    PubMed  CAS  Google Scholar 

  125. 125. T. Ohga, T. Uchiumi, Y. Makino, K. Koike, M. Wada, M. Kuwano, and K. Kohno, Direct involvement of the Y-box binding protein YB-1 in genotoxic stress-induced activation of the human multidrug resistance 1 gene. J Biol Chem 273, 5997 (1998).

    PubMed  CAS  Google Scholar 

  126. 126. C. Rohlff and R. I. Glazer, Regulation of the MDR1 promoter by cyclic AMP-dependent protein kinase and transcription factor Sp1. Int J Oncol 12, 383 (1998).

    PubMed  CAS  Google Scholar 

  127. 127. K. Kohno, S. Sato, H. Takano, K. Matsuo, and M. Kuwano, The direct activation of human multidrug resistance gene (MDR1) by anticancer agents. Biochem Biophys Res Commun 165, 1415 (1989).

    PubMed  CAS  Google Scholar 

  128. 128. N. Kioka, Y. Yamano, T. Komano, and K. Ueda, Heat-shock responsive elements in the induction of the multidrug resistance gene (MDR1). FEBS Lett 301, 37 (1992).

    PubMed  CAS  Google Scholar 

  129. 129. K. V. Chin, S. Tanaka, G. Darlington, I. Pastan, and M. M. Gottesman, Heat shock and arsenite increase expression of the multidrug resistance (MDR1) gene in human renal carcinoma cells. J Biol Chem 265, 221 (1990).

    PubMed  CAS  Google Scholar 

  130. 130. K. V. Chin, K. Ueda, I. Pastan, and M. M. Gottesman, Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science 255, 459 (1992).

    PubMed  CAS  Google Scholar 

  131. 131. C. Cucco and B. Calabretta, In vitro and in vivo reversal of multidrug resistance in a human leukemia-resistant cell line by mdr1 antisense oligodeoxynucleotides. Cancer Res 56, 4332 (1996).

    PubMed  CAS  Google Scholar 

  132. 132. J. Bertram, K. Palfner, M Killian, W. Brysch, K. H. Schlingensiepen, W. Hiddemann, and M. Kneba, Reversal of multiple drug resistance in vitro by phosphorothioate oligonucleotides and ribozymes. Anticancer Drugs 6, 124 (1995).

    PubMed  CAS  Google Scholar 

  133. 133. A. H. Schinkel, S. Kemp, M. Dolle, G. Rudenko, and E. Wagenaar, N-Glycosylation and deletion mutants of the human MDR1 P-glycoprotein. J Biol Chem 268, 7474 (1993).

    PubMed  CAS  Google Scholar 

  134. 134. H. Lis and N. Sharon, Protein glycosylation. Structural and functional aspects. Eur J Biochem 218, 1 (1993).

    PubMed  CAS  Google Scholar 

  135. 135. H. R. Goodfellow, A. Sardini, S. Ruetz, R. Callaghan, P. Gros, P. A. McNaughton, and C. F. Higgins, Protein kinase C-mediated phosphorylation does not regulate drug transport by the human multidrug resistance P-glycoprotein. J Biol Chem 271, 13,668 (1996).

    CAS  Google Scholar 

  136. 136. H. P. Ammon and M. A. Wahl, Pharmacology of Curcuma longa. Planta Med 57, 1 (1991).

    PubMed  CAS  Google Scholar 

  137. 137. R. S. Ramsewak, D. L. DeWitt, and M. G. Nair, Cytotoxicity, antioxidant and anti-inflammatory activities of curcumins I–III from Curcuma longa. Phytomedicine 7, 303 (2000).

    PubMed  CAS  Google Scholar 

  138. 138. W. Chearwae, S. Anuchapreeda, K. Nandigama, S. V. Ambudkar, and P. Limtrakul, Biochemical mechanism of modulation of human P-glycoprotein (ABCB1) by curcumin I, II, and III purified from Turmeric powder. Biochem Pharmacol 68, 2043 (2004).

    PubMed  CAS  Google Scholar 

  139. 139. W. Chearwae, C. P. Wu, H. Y. Chu, T. R. Lee, S. V. Ambudkar, and P. Limtrakul, Curcuminoids purified from turmeric powder modulate the function of human multidrug resistance protein 1 (ABCC1). Cancer Chemother Pharmacol 57, 376 (2006).

    PubMed  CAS  Google Scholar 

  140. 140. L. M. Antunes, M. C. Araujo, J. D. Darin, and M. L. Bianchi, Effects of the antioxidants curcumin and vitamin C on cisplatin-induced clastogenesis in Wistar rat bone marrow cells. Mutat Res 465, 131 (2000).

    PubMed  CAS  Google Scholar 

  141. 141. T. Kawamori, R. Lubet, V. E. Steele, G. J. Kelloff, R. B. Kaskey, C. V. Rao, and B. S. Reddy, Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res 59, 597 (1999).

    PubMed  CAS  Google Scholar 

  142. 142. M. L. Kuo, T. S. Huang, and J. K. Lin, Curcumin, an antioxidant and anti-tumor promoter, induces apoptosis in human leukemia cells. Biochim Biophys Acta 1317, 95 (1996).

    PubMed  CAS  Google Scholar 

  143. 143. P. Limtrakul, S. Lipigorngoson, O. Namwong, A. Apisariyakul, and F. W. Dunn, Inhibitory effect of dietary curcumin on skin carcinogenesis in mice. Cancer Lett 116, 197 (1997).

    PubMed  CAS  Google Scholar 

  144. 144. B. B. Aggarwal, A. Kumar, and A. C. Bharti, Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res 23, 363 (2003).

    PubMed  CAS  Google Scholar 

  145. 145. N. Chainani-Wu, Safety and anti-inflammatory activity of curcumin: A component of tumeric (Curcuma longa). J Altern Complement Med. 9, 161 (2003).

    PubMed  Google Scholar 

  146. 146. C. R. Ireson, D. J. Jones, S. Orr, M. W. Coughtrie, D. J. Boocock, M. L. Williams, P. B. Farmer, W. P. Steward, and A. J. Gescher, Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol Biomarkers Prev 11, 105 (2002).

    PubMed  CAS  Google Scholar 

  147. 147. M. H. Pan, T. M. Huang, and J. K. Lin, Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 27, 486 (1999).

    PubMed  CAS  Google Scholar 

  148. 148. J. K. Lin, M. H. Pan, and S. Y. Lin-Shiau, Recent studies on the biofunctions and biotransformations of curcumin. Biofactors 13, 153 (2000).

    PubMed  CAS  Google Scholar 

  149. 149. S. Anuchapreeda, P. Leechanachai, M. M. Smith, S. V. Ambudkar, and P. N. Limtrakul, Modulation of P-glycoprotein expression and function by curcumin in multidrug-resistant human KB cells. Biochem Pharmacol 64,573 (2002).

    PubMed  CAS  Google Scholar 

  150. 150. P. Waiwut, S. Anuchapreeda, and P. Limtrakul, Curcumin inhibits the P-glycoprotein level in carcinoma of cervix cells (KB-carcinoma cell lines) induced by vinblastine, Chiang Mai Med Bull 41, 135 (2002).

    Google Scholar 

  151. 151. P. Limtrakul, S. Anuchapreeda, and D. Buddhasukh, Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids. BMC Cancer 4, 13 (2004).

    PubMed  Google Scholar 

  152. 152. N. Romiti, R. Tongiani, F. Cervelli, and E. Chieli Effects of curcumin on P-glycoprotein in primary cultures of rat hepatocytes. Life Sci 62(25), 2349 (1998).

    PubMed  CAS  Google Scholar 

  153. 153. H. M. Wortelboer, M. Usta, A. E. van der Velde, M. G. Boersma, B. Spenkelink, J. J. van Zanden, I. M. Rietjens, P. J. van Bladeren, and N. H. Cnubben, Interplay between MRP inhibition and metabolism of MRP inhibitors, the case of curcumin. Chem Res Toxicol 16, 1642 (2003).

    PubMed  CAS  Google Scholar 

  154. 154. J. Hong, J. D. Lambert, S. H. Lee, P. J. Sinko, and C. S. Yang, Involvement of multidrug resistance-associated proteins in regulating cellular levels of (-)-epigallocatechin-3-gallate and its methyl metabolites. Biochem Biophys Res Commun 310, 222 (2003).

    PubMed  CAS  Google Scholar 

  155. 155. M. E. Egan, M. Pearson, S. A. Weiner, V. Rajendran, D. Rubin, J. Glockner-Pagel, S. Canny, K. Du, G. L. Lukacs, and M. J. Caplan, Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science 304(5670), 600 (2004).

    PubMed  CAS  Google Scholar 

  156. 156. A. L. Berger, C. O. Randak, L. S. Ostedgaard, P. H. Karp, D. W. Vermeer, and M. J. Welsh, Curcumin stimulates cystic fibrosis transmembrane conductance regulator Cl channel activity. J Biol Chem 280, 5221 (2005).

    PubMed  CAS  Google Scholar 

  157. 156a. R. C. Bargou, F. Emmerich, D. Krappmann, K. Bommert, M. Y. Mapara, W. Arnold, H. D. Royer, E. Grinstein, A. Greiner, C. Scheidereit, and B. Dorken, Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin's disease tumor cells. J Clin Invest 100, 2961 (1997).

    PubMed  CAS  Google Scholar 

  158. 158. P. Limtrakul, W. Chearwae, S. Shukla, C. Phisalphong and S. Ambudkar S, Modulation of function of three ABC drug transporters, P-glycoprotein (ABCB1), mitoxantrone resistance protein (ABCG2)) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin. Molecular and Cellular Biochemistry (Sep 8), 2006; Epub ahead of print).

    Google Scholar 

  159. 159. C. Chearwae, S. Shukla, P. Limtrakul, S. Ambudkar, Modulation of the function of the multidrug resistance linked ATP-binding cassette transporter ABCG2 by cancer chemopreventive agent curcumin. Molecular Cancer Therapeutic 5(8), 1995–2006 (2006).

    CAS  Google Scholar 

  160. 160. R. W. Robey, K. Steadman, O. Polgar, K. Morisaki, M. Blayney, P. Mistry, and S. E. Bates, Pheophorbide a is a specific probe for ABCG2 function and inhibition. Cancer Res 64, 1242 (2004).

    PubMed  CAS  Google Scholar 

  161. 161. D. Hanahan and R. A. Weinberg, The hallmarks of cancer. Cell 100, 57 (2000).

    PubMed  CAS  Google Scholar 

  162. 162. N. D. Perkins, The Rel/NF-kappa B family: Friend and foe. Trends Biochem Sci 25,434 (2000).

    PubMed  CAS  Google Scholar 

  163. 163. C. Y. Wang, J. C. Cusack, Jr., R. Liu, and A. S. Baldwin, Jr., Control of inducible chemoresistance: Enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med 5, 412 (1999).

    PubMed  Google Scholar 

  164. 164. M. Barkett and T. D. Gilmore, Control of apoptosis by Rel/NF-kappaB transcription factors. Oncogene 18, 6910 (1999).

    PubMed  CAS  Google Scholar 

  165. 165. S. Y. Foo and G. P. Nolan, NF-kappaB to the rescue, RELs, apoptosis and cellular transformation. Trends Genet 15, 229 (1999).

    PubMed  CAS  Google Scholar 

  166. 166. P. A. Baeuerle and D. Baltimore, I kappa B, a specific inhibitor of the NF-kappa B transcription factor. Science 242, 540 (1988).

    PubMed  CAS  Google Scholar 

  167. 167. S. E. Chuang, P. Y. Yeh, Y. S. Lu, G. M. Lai, C. M. Liao, M. Gao, and A. L. Cheng, Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappaB (NF-kappaB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochem Pharmacol. 63, 1709 (2002).

    PubMed  CAS  Google Scholar 

  168. 168. C. Y. Wang, M. W. Mayo, R. G. Korneluk, D. V. Goeddel, and A. S. Baldwin, Jr., NF-kappaB antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281, 1680 (1998).

    PubMed  CAS  Google Scholar 

  169. 169. N. Mitsiades, C. S. Mitsiades, V. Poulaki, D. Chauhan, P. G. Richardson, T. Hideshima, N. Munshi, S. P. Treon, and K. C. Anderson, Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: Therapeutic applications. Blood 99, 4079 (2002).

    PubMed  CAS  Google Scholar 

  170. 170. S. Singh and B. B. Aggarwal, Activation of transcription factor NF-kappaB is suppressed by curcumin (diferuloylmethane) [corrected]. J Biol Chem 270, 24,995 (1995).

    CAS  Google Scholar 

  171. 171. S. Aggarwal, H. Ichikawa, Y. Takada, S. K. Sandur, S. Shishodia, and B. B. Aggarwal, Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBα kinase and Akt activation. Mol Pharmacol 69, 195 (2006).

    PubMed  CAS  Google Scholar 

  172. 172. S. V. Bava, V. T. Puliappadamba, A. Deepti, A. Nair, D. Karunagaran, and R. J. Anto, Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization. J Biol Chem 280, 6301 (2005).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Limtrakul, P. (2007). CURCUMIN AS CHEMOSENSITIZER. In: Aggarwal, B.B., Surh, YJ., Shishodia, S. (eds) The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY, vol 595. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46401-5_12

Download citation

Publish with us

Policies and ethics