Skip to main content

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 40))

Abstract

Direct Methanol Fuel Cells (DMFCs) are galvanic electrochemical flow systems that convert chemical energy from methanol and oxygen directly to electrical energy. This direct conversion avoids the limitations of the Carnot cycle that constrains the performance of engines and gives DMFCs a higher theoretical efficiency. DMFCs were first investigated in the 1950’s and research on these systems had a renaissance in the 1990’s with the advent of Nafion® use for fuel cell applications.1–3 DMFCs are akin to Proton Exchange Membrane Fuel Cells (PEMFCs) with the main difference being that DMFCs oxidize methanol (1) on the anode to produce protons while PEMFCs oxidize hydrogen (2) to produce protons:

$$ CH_3 OH + H_2 O \to CO_2 + 6H^ + + 6e^ - (E^\circ = 0.02V vs. SHE) $$
((1))
$$ 3 H_2 \to 6H^ + + 6e^ - (E^\circ = 0.00V vs. SHE) $$
((2))

Both DMFCs and PEMFCs reduce oxygen on the cathode according to (3):

$$ \frac{3} {2}O_2 + 6H^ + + 6e^ - \to 3 H_2 O (E^\circ = 1.23V vs. SHE) $$
((3))

This makes the over all,

$$ CH_3 OH + \frac{3} {2}O_2 \to CO_2 + 3 H_2 O (E^\circ _{cell} = 1.21V vs. SHE) $$
((4))
$$ 2 H_2 + O_2 \to 2 H_2 O (E^\circ _{cell} = 1.23V vs. SHE) $$
((5))

The theoretical potentials of both reactions are nearly equal and looking at logistical issues appears to give DMFCs many advantages over PEMFCs and lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B.D. McNicol,, D. A. J. Rand, and K. R. Williams, Journal of Power Sources 83 (1999) 15–31.

    CAS  Google Scholar 

  2. B.D. McNicol,, D. A. J. Rand, and K. R. Williams, Journal of Power Sources 100 (2001) 47–59.

    CAS  Google Scholar 

  3. S. Banerjee, and D. E. Curtin, J Fluorine Chem 125 (2004) 1211–1216.

    CAS  Google Scholar 

  4. J. Larminie and A. Dicks, Fuel Cell Systems Explained, 2nd ed. John Wiley & Sons Inc., Hoboken, NJ, 2003.

    Google Scholar 

  5. R. Dillon et al., J Power Sources 127 (2004) 112–126.

    CAS  Google Scholar 

  6. A. K. Shukla and R.K. Raman, Annu. Rev. Mater. Res. 33 (2003) 155–168.

    CAS  Google Scholar 

  7. T. Kendall, Platinum 2004, Johnson Matthey, 2004.

    Google Scholar 

  8. R. Parsons and T. Vandernoot, J. Electroanal. Chem. 257 (1988) 9–45.

    CAS  Google Scholar 

  9. T. Iwasita, Electrochim. Acta 47 (2002) 3663–3674.

    CAS  Google Scholar 

  10. S. Wasmus and A. Kuver, J Electroanal. Chem. 461 (1999) 14–31.

    CAS  Google Scholar 

  11. L. Carrette, K. A. Friedrich, and U. Stimming, Chemphyschem 1(4) (2000) 162–193.

    Google Scholar 

  12. E. A. Batista et al., J. Electroanal. Chem. 571 (2004) 273–282.

    CAS  Google Scholar 

  13. E. A.Batista et al, Electrochem. Commun. 5 (2003) 843–846.

    CAS  Google Scholar 

  14. S. Desai and M. Neurock, Electrochimica Acta 48 (2003) 3759–3773.

    CAS  Google Scholar 

  15. A. Hamnett, Catalysis Today 38 (1997) 445–457.

    CAS  Google Scholar 

  16. S. J. Liao, V. Linkov, and L. Petrik, Appl. Catal a-Gen. 235 (2002) 149–155.

    CAS  Google Scholar 

  17. K. W. Park et al., J. Phys. Chem. B 106 (2002) 1869–1877.

    CAS  Google Scholar 

  18. K. Y. Chan et al., J. Mater. Chem. 14 (2004) 505–516.

    CAS  Google Scholar 

  19. M. Watanabe, M. Uchida, and S. Motoo, J. Electroanal Chem. 229 (1987) 395–406.

    CAS  Google Scholar 

  20. H. N. Dinh et al, J. Electroanal Chem. 491 (2000) 222–233.

    CAS  Google Scholar 

  21. H. Hoster et al., J. Electrochem. Soc. 148 (2001) A496–A501.

    CAS  Google Scholar 

  22. M E. Tess et al., Inorg. Chem. 39 (2000) 3942-+.

    CAS  Google Scholar 

  23. J. W. Long et al., J. Phys. Chem. B 104 (2000) 9772–9776.

    CAS  Google Scholar 

  24. S. L. Gojkovic and T.R. Vidakovic, Electrochim. Acta 47 (2001) 633–642.

    CAS  Google Scholar 

  25. H. Hoster et al., Phys. Chem. Chem. Phys. 3 (2001) 337–346.

    CAS  Google Scholar 

  26. T. Iwasita et al., Langmuir 16 (2000) 522–529.

    CAS  Google Scholar 

  27. Z. D. Wei and S.H. Chan, J. Electroanal. Chem. 569 (2004) 23–33.

    CAS  Google Scholar 

  28. A. J. Dickinson et al., Electrochim. Acta 47 (2002) 3733–3739.

    CAS  Google Scholar 

  29. A. J. Dickinson et al., J. Appl. Electrochem. 34 (2004) 975–980.

    CAS  Google Scholar 

  30. Z. J. Jusys, Kaiser, and R.J. Behm, Langmuir 19 (2003) 6759–6769.

    Google Scholar 

  31. L. Gao, H.L. Huang, and C. Korzeniewski, Electrochim. Acta 49 (2004) 1281–1287.

    CAS  Google Scholar 

  32. A. H. C. Sirk et al., J. Phys. Chem. B 108 (2004) 689–695.

    CAS  Google Scholar 

  33. L. Dubau et al., J. Appl. Electrochem. 33 (2003) 419–429.

    CAS  Google Scholar 

  34. S. L. Gojkovic, T.R. Vidakovic, and D.R. Durovic, Electrochim. Acta 48 (2003) 3607–3614.

    CAS  Google Scholar 

  35. A. V. Tripkovic et al., Electrochim. Acta 47 (2002) 3707–3714.

    CAS  Google Scholar 

  36. M. S. Loffler et al., Electrochim. Acta 48 (2003) 3047–3051.

    CAS  Google Scholar 

  37. Y. J. Zhang et al., Catal Today 93–95 (2004) 619–626.

    Google Scholar 

  38. B. Yang et al., Chem. Mater. 15 (2003) 3552–3557.

    CAS  Google Scholar 

  39. L. Dubau et al., J. Electroanal. Chem. 554 (2003) 407–415.

    Google Scholar 

  40. H. A. Gasteiger et al., Journal of Physical Chemistry 97 (1993) 12020–12029.

    CAS  Google Scholar 

  41. M. P. Hogarth and T.R. Ralph, Platinum Metals Review 46 (2002) 146–164.

    CAS  Google Scholar 

  42. L. Jorissen et al., J. Power Sources 105 (2002) 267–273.

    CAS  Google Scholar 

  43. Q. F. Li et al., Chem. Mater. 15 (2003) 4896–4915.

    CAS  Google Scholar 

  44. S. Surampudi et al., J. Power Sources 47 (1994) 377–385.

    CAS  Google Scholar 

  45. X. M. Ren, M.S. Wilson, and S. Gottesfeld, J. Electrochem. Soc. 143 (1996) L12–L15.

    CAS  Google Scholar 

  46. K. Scott, W. Taama, and J. Cruickshank, J. Appl. Electrochem. 28 (1998) 289–297.

    CAS  Google Scholar 

  47. C. K. Witham, et al, Electrochem. Solid St. 3 (2000) 497–500.

    CAS  Google Scholar 

  48. Y. K. Xiu and H. Nakagawa, J. Electrochem. Soc. 151 (2004) A1483–A1488.

    CAS  Google Scholar 

  49. M. Baldauf and W. Preidel, J. Appl. Electrochem. 31 (2001) 781–786.

    CAS  Google Scholar 

  50. S. C. Thomas et al., Electrochim. Acta 47 (2002) 3741–3748.

    CAS  Google Scholar 

  51. A. K. Shukla et al., Electrochim. Acta 47 (2002) 3401–3407.

    CAS  Google Scholar 

  52. A. K. Shukla et al., J. Power Sources 76 (1998) 54–59.

    CAS  Google Scholar 

  53. A. S.Arico et al., Electrochim. Acta 47 (2002) 3723–3732.

    CAS  Google Scholar 

  54. A. S. Arico et al., Electrochem. Commun. 6 (2004) 164–169.

    CAS  Google Scholar 

  55. W. C. Choi and S. I. Woo, J. Power Sources 124 (2003) 420–425.

    CAS  Google Scholar 

  56. C. Coutanceauet al., J. Appl. Electrochem. 34 (2004) 61–66.

    CAS  Google Scholar 

  57. Y. H. Chu et al., J. Power Sources 118 (2003) 334–341.

    CAS  Google Scholar 

  58. D. X. Cao and S. H. Bergens, J. Power Sources 134 (2004) 170–180.

    CAS  Google Scholar 

  59. S. C. Thomas, X. Ren, and S. Gottesfeld, J. Electrochem. Soc. 146 (1999) 4354–4359.

    CAS  Google Scholar 

  60. Z. Wei et al, J. Power Sources 106 (2002) 364–369.

    CAS  Google Scholar 

  61. D. Chu and S. Gilman, J. Electrochem. Soc. 141 (1994) 1770–1773.

    CAS  Google Scholar 

  62. P. S. Kauranen and E. Skou, J. Electroanal. Chem. 408 (1996) 189–198.

    Google Scholar 

  63. Z Jusys and R. J. Behm, Electrochim. Acta 49 (2004) 3891–3900.

    CAS  Google Scholar 

  64. S. Gupta et al., J Appl. Electrochem. 28 (1998) 673–682.

    CAS  Google Scholar 

  65. R. K. Raman, G. Murgia, and A. K. Shukla, J. Appl. Electrochem. 34 (2004) 1029–1038.

    CAS  Google Scholar 

  66. A. K. Shukla et al., J. Electroanal Chem. 563 (2004) 181–190.

    CAS  Google Scholar 

  67. H. Yang et al., J. Phys. Chem. B 108 (2004) 1938–1947.

    CAS  Google Scholar 

  68. H. Yang et al., J. Phys. Chem. B 108 (2004) 11024–11034.

    CAS  Google Scholar 

  69. F. Maillard et al., Electrochim. Acta. 47 (2002) 3431–3440.

    CAS  Google Scholar 

  70. T. J. Schmidt et al., J. Electrochem. Soc. 147 (2000) 2620–2624.

    CAS  Google Scholar 

  71. K. Sawai and N. Suzuki, J. Electrochem. Soc. 151 (2004) A2132–A2137.

    CAS  Google Scholar 

  72. K. Sawai and N. Suzuki, J. Electrochem. Soc. 151 (2004) A682–A688.

    CAS  Google Scholar 

  73. J. Kallo, W. Lehnert, and R. von Helmolt, J Electrochem. Soc. 150 (2003) A765–A769.

    CAS  Google Scholar 

  74. C. Yang et al., Electrochem. Solid St. 4 (2001) A31–A34.

    CAS  Google Scholar 

  75. C. Yang et al., J Membrane Sci. 237 (2004) 145–161.

    CAS  Google Scholar 

  76. A. S. Arico et al., J. Power Sources 128 (2004) 113–118.

    CAS  Google Scholar 

  77. P. L. Antonucci et al., Solid State Ionics 125 (1999) 431–437.

    CAS  Google Scholar 

  78. P. Staiti et al., Solid State Ionics 145 (2001) 101–107.

    CAS  Google Scholar 

  79. Z. E. Florjanczyk, E. Wielgus-Barry, and Z. Poltarzewski, Solid State Ionics 145 (2001) 119–126.

    CAS  Google Scholar 

  80. A. Heinzel and V. M. Barragan, J. Power Sources 84 (1999) 70–74.

    CAS  Google Scholar 

  81. M. W. Verbrugge, J. Electrochem. Soc. 136 (1989) 417–423.

    CAS  Google Scholar 

  82. V. N. Tricoli, Carretta, and M. Bartolozzi, J. Electrochem. Soc. 147 (2000) 1286–1290.

    Google Scholar 

  83. J. Cruickshank and K. Scott, J. Power Sources 70 (1998) 40–47.

    CAS  Google Scholar 

  84. P. S. Kauranen and E. Skou, J. Appl. Electrochem. 26 (1996) 909–917.

    CAS  Google Scholar 

  85. S. Hikita, K. Yamane, and Y. Nakajima, Jsae. Rev. 23 (2002) 133–135.

    CAS  Google Scholar 

  86. S. Hikita, K. Yamane, and Y. Nakajima, Jsae. Rev. 22 (2001) 151–156.

    CAS  Google Scholar 

  87. X. M. Ren et al., J. Power Sources 86 (2000) 111–116.

    CAS  Google Scholar 

  88. X. Ren, T. E. Springer, and S. Gottesfeld, J. Electrochem. Soc. 147 (2000) 92–98.

    CAS  Google Scholar 

  89. K. D. Kreuer et al., Chemical Reviews 104 (2004) 4637–4678.

    CAS  Google Scholar 

  90. X. Ren, T. Zawodzinski, and S. Gottesfeld, Abstr. Pap. Am. Chem. Soc. 217 (1999) U490–U490.

    Google Scholar 

  91. X. M. Ren and S. Gottesfeld, J. Electrochem. Soc. 148 (2001) A87–A93.

    CAS  Google Scholar 

  92. X. M. Ren, W. Henderson, and S. Gottesfeld, J. Electrochem. Soc. 144 (1997) L267–L270.

    CAS  Google Scholar 

  93. X. M. Ren et al., J. Electrochem. Soc. 147 (2000) 466–474.

    CAS  Google Scholar 

  94. H. Dohle et al, Journal of Power Sources 105 (2002) 274–282.

    CAS  Google Scholar 

  95. J. A. Drak, W. Wilson, and K. Killeen, J. Electrochem. Soc. 151 (2004) A413–A417.

    Google Scholar 

  96. R. Jiang and D. Chu, J. Electroch. Soc. 151 (2004) A69–A76.

    CAS  Google Scholar 

  97. V. Gogel et al., J. Power Sources 127 (2004) 172–180.

    CAS  Google Scholar 

  98. E. B. Easton et al., J Electrochem. Soc. 150 (2003) C735–C739.

    CAS  Google Scholar 

  99. N. Miyake, J. Wainright, and R. F. Savinell, Journal of the Electrochemical Society 148 (2001) A898–A904.

    CAS  Google Scholar 

  100. N. Miyake, J. Wainright, and R. F. Savinell, Journal of the Electrochemical Society 148 (2001) A905–A909.

    CAS  Google Scholar 

  101. S. P. Nunes et al., Journal of Membrane Science 203 (2002) 215–225.

    CAS  Google Scholar 

  102. U. Lavrencic Stangar et al., Solid State Ionics 145 (2001) 109–118.

    Google Scholar 

  103. Z. Poltarzewski et al., Solid State Ionics 119 (1999) 301–304.

    CAS  Google Scholar 

  104. W. C. Choi, J. D. Kim, and S. I. Woo, J. Power Sources 96 (2001) 411–414.

    CAS  Google Scholar 

  105. Z. Q. Ma, P. Cheng, and T. S. Zhao, J. Membrane Sci. 215 (2003) 327–336.

    CAS  Google Scholar 

  106. Y. J. Kim et al., Electrochim. Acta 49 (2004) 3227–3234.

    CAS  Google Scholar 

  107. T. Hatanaka et al., Fuel 81 (2002) 2173–2176.

    CAS  Google Scholar 

  108. K. Miyatake, H. Zhou, and M. Watanabe, Macromolecules 37 (2004) 4956–4960.

    CAS  Google Scholar 

  109. L. Li, J. Zhang, and Y. X. Wang, J Membrane Set 226 (2003) 159–167.

    CAS  Google Scholar 

  110. L. Li, J. Zhang, and Y. X. Wang, J Mater. Sci. Lett. 22 (2003) 1595–1597.

    CAS  Google Scholar 

  111. M. K. Song et al., Journal of Power Sources 117 (2003) 14–21.

    CAS  Google Scholar 

  112. Y. Si et al., Journal of the Electrochemical Society 151 (2004) A463–A469.

    CAS  Google Scholar 

  113. G. K. S. Prakash et al., J. Fluorine Chem. 125 (2004) 1217–1230.

    CAS  Google Scholar 

  114. M. A. Navarra et al., Journal of the Electrochemical Society 150 (2003) A1528–A1532.

    CAS  Google Scholar 

  115. S. F. Baxter, V. S. Battaglia, and R. E. White, Journal of the Electrochemical Society 146 (1999) 437–447.

    CAS  Google Scholar 

  116. K. T. Jeng and C. W. Chen, Journal of Power Sources 112 (2002) 367–375.

    CAS  Google Scholar 

  117. J. Nordlund and G. Lindbergh, Journal of the Electrochemical Society 149 (2002) A1107–A1113.

    CAS  Google Scholar 

  118. K. Scott and P. Argyropoulos, Journal of Power Sources 137 (2004) 228–238.

    CAS  Google Scholar 

  119. T. Frelink, W. Visscher, and J. A. R. van Veen, Langmuir 12 (1996) 3702.

    CAS  Google Scholar 

  120. A. A. Kulikovsky, Electrochemistry Communications 5 (2003) 530–538.

    CAS  Google Scholar 

  121. J. P. Meyers and J. Newman, Journal of the Electrochemical Society 149 (2002) (a) A718-A728m and (b) A729-A735.

    Google Scholar 

  122. P. Argyropoulos et al., Journal of Power Sources 123 (2003) 190–199.

    CAS  Google Scholar 

  123. A. A. Kulikovsky, Electrochemistry Communications 4 (2002) 318.

    CAS  Google Scholar 

  124. A. A. Kulikovsky, Electrochemistry Communications 4 (2002) 939–946.

    CAS  Google Scholar 

  125. H. Dohle, J. Divisek, and R. Jung, Journal of Power Sources 86 (2000) 469–477.

    CAS  Google Scholar 

  126. G. Murgia et al., Journal of the Electrochemical Society 150 (2003) A1231–A1245.

    CAS  Google Scholar 

  127. R. K. Raman, G. Murgia, and A. K. Shukla, Journal of Applied Electrochemistry 34 (2004)1029–1038.

    Google Scholar 

  128. K. Scott, P. Argyropoulos, and K. Sundmacher, Journal of Electroanalytical Chemistry 477 (1999) 97–110.

    CAS  Google Scholar 

  129. K. Sundmacher and K. Scott, Chemical Engineering Science 54 (1999) 2927–2936.

    CAS  Google Scholar 

  130. K. Scott, K, Journal of Power Sources 83 (1999) 204–216.

    Google Scholar 

  131. B. L. Garcia, V. A. Sethuraman, J. W. Weidner, R E. White, and R. Dougal, Journal of Fuel Cell Science and Technology 1(1) (2004) 43.

    CAS  Google Scholar 

  132. J. P. Meyers and J. Newman, Journal of the Electrochemical Society 149 (2002) A710–A717.

    CAS  Google Scholar 

  133. J. Newman and W. Tiedemann, AIChE Journal 21 (1975) 25.

    CAS  Google Scholar 

  134. J. S. Newman and W. Tiedemann, Advances in Electrochemistry and Electrochemical Engineering 11 (1978) 353.

    CAS  Google Scholar 

  135. X. Ren et al., The Electrochemical Society Proceedings Series, 1995. Pennington, NJ.

    Google Scholar 

  136. K. Scott, W. Taama, and J. Cruickshank, Journal of Power Sources 65 (1997) 159–171.

    CAS  Google Scholar 

  137. S. Zhou et al., Physical Chemistry Chemical Physics 3 (2001) 347–355.

    CAS  Google Scholar 

  138. K. Sundmacher et al., Chemical Engineering Science 56 (2001) 333–341.

    CAS  Google Scholar 

  139. P. Argyropoulos, K. Scott, and W. M. Taama, Journal of Applied Electrochemistry 30 (2000) 899–913.

    CAS  Google Scholar 

  140. P. Argyropoulos, K. Scott, and W. M. Taama, Journal of Power Sources 79 (1999) 169–183.

    CAS  Google Scholar 

  141. P. Argyropoulos, K. Scott, and W. M. Taama, Journal of Power Sources 79 (1999) 184–198.

    CAS  Google Scholar 

  142. A. A. Kulikovsky, J. Divisek, and A. A. Kornyshev, Journal of the Electrochemical Society 146 (1999) 3981–3991.

    CAS  Google Scholar 

  143. E. Birgersson et al., Journal of the Electrochemical Society 150 (2003) A1368–A1376.

    CAS  Google Scholar 

  144. E. Birgersson et al., Journal of the Electrochemical Society 151 (2004) A2157–A2172.

    CAS  Google Scholar 

  145. J. Nordlund and G. Lindbergh, Journal of the Electrochemical Society 151 (2004) A1357–A1362.

    CAS  Google Scholar 

  146. A. A. Kulikovsky, Electrochemistry Communications 6 (2004) 1259–1265.

    CAS  Google Scholar 

  147. H. Guo and C. Ma, Electrochemistry Communications 6 (2004) 306–312.

    CAS  Google Scholar 

  148. A. A. Kulikovsky, Journal of Applied Electrochemistry 30 (2000) 1005–1014.

    CAS  Google Scholar 

  149. A. A. Kulikovsky, J. Divisek, and A. A. Kornyshev, Journal of the Electrochemical Society 147 (2000) 953–959.

    CAS  Google Scholar 

  150. J. R. Fan et al., Energy & Fuels 16 (2002) 1591–1598.

    CAS  Google Scholar 

  151. Z. H. Wang and C.Y. Wang, Journal of the Electrochemical Society 150 (2003) A508–A519.

    CAS  Google Scholar 

  152. J. Divisek et al., Journal of the Electrochemical Society 150 (2003) A811–A825.

    CAS  Google Scholar 

  153. A. A. Kulikovsky, Electrochemistry Communications 3 (2001) 460–466.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Garc’ia, B.L., Weidner, J.W. (2007). Review of Direct Methanol Fuel Cells. In: White, R.E., Vayenas, C.G., Gamboa-Aldeco, M.E. (eds) Modern Aspects of Electrochemistry No. 40. Modern Aspects of Electrochemistry, vol 40. Springer, New York, NY. https://doi.org/10.1007/978-0-387-46106-9_5

Download citation

Publish with us

Policies and ethics