Skip to main content

Nanomaterials in Li-Ion Battery Electrode Design

  • Chapter
Modern Aspects of Electrochemistry No. 40

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 40))

Abstract

Li-ion batteries have generated great interest as lightweight, portable, rechargeable power sources over the last decade. Their introduction in 1990 by T. Nagaura and K. Tozawa of SonyTec Inc. fueled the explosion of personal electronic devices.1 Li-ion batteries are now the power source of choice for laptops, cell phones, and digital cameras. The public has quickly embraced this technology, which accounts for an approximately $3 billion annual market.2 Despite (or perhaps as a result of) the commercial success of these batteries, a global research initiative exists to improve the existing design. The goal of which is to apply this technology to more demanding and exotic uses, such as the electric component of hybrid vehicles, low-temperature applications, and power supplies for MEMs. However, the current design cannot adequately satisfy the power requirements of such systems, due to the inability to deliver a sufficient quantity of charge at high discharge currents.3 This chapter will detail the efforts of laboratories, ours in particular, to incorporate the field of nanomaterials to improve upon Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. Nagaura and K. Tozawa, Prog. Batt. Solar Cells 9 (1990) 209.

    CAS  Google Scholar 

  2. A.H. Tullo, Chem EngNews 80 (2002) 25.

    Google Scholar 

  3. R. Moshtev and B. Johnson, J. Power Sources 91 (2000) 86.

    Article  CAS  Google Scholar 

  4. C.R. Martin, Science 266 (1994) 1961.

    Article  CAS  Google Scholar 

  5. K. B. Jirage, J. C. Hulteen, and C.R. Martin, Science 278 (1997) 655.

    Article  CAS  Google Scholar 

  6. C. J. Brumlik and C. R. Martin, Journal of the American Chemical Society 113 (1991) 3174.

    Article  CAS  Google Scholar 

  7. V. P. Menon and C. R. Martin, Analytical Chemistry 67 (1995) 1920.

    Article  CAS  Google Scholar 

  8. M. Wirtz and C.R. Martin, Advanced Materials 15 (2003) 455.

    Article  CAS  Google Scholar 

  9. G. Che, B. B. Lakshmi, C.R. Martin, E. R. Fisher, and R. S. Ruoff, Chemistry of Materials 10 (1998) 260.

    Article  CAS  Google Scholar 

  10. S. A. Miller, V. Y. Young, and C. R. Martin, J. Am. Chem. Soc. 123 (2001) 12335.

    Article  CAS  Google Scholar 

  11. G. Che, B.B. Lakshmi, E.R. Fisher, and C.R. Martin, Nature 393 (1998) 346.

    Article  CAS  Google Scholar 

  12. B. B. Lakshmi, P. K. Dorhout, and C. R. Martin, Chemistry of Materials 9 (1997) 857.

    Article  CAS  Google Scholar 

  13. B. B. Lakshmi, C. J. Patrissi, and C. R. Martin, Chem. Mater. 9 (1997) 2544.

    Article  CAS  Google Scholar 

  14. C. R. Martin, Accounts of Chemical Research 28 (1995) 61.

    Article  CAS  Google Scholar 

  15. C. R. Martin, V. P. Menon, and R. V. Parthasarathy, Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) 35 (1994) 229.

    CAS  Google Scholar 

  16. G. Che, K. B. Jirage, E. R. Fisher, and C. R. Martin, J. Electrochem. Soc. 144 (1997) 4296.

    Article  CAS  Google Scholar 

  17. S. Kuwabata, T. Idzu, C. R. Martin, and H. Yoneyama, J. Electrochem. Soc. 145 (1998) 2707.

    Article  CAS  Google Scholar 

  18. N. Li, C. R. Martin, and B. Scrosati, Electrochem. Solid St. 3 (2000) 316.

    Article  CAS  Google Scholar 

  19. N. Li, C. J. Patrissi, G. Che, and C. R. Martin, J. Electrochem. Soc. 147 (2000) 2044.

    Article  CAS  Google Scholar 

  20. N. Li and C. R. Martin, J. Electrochem. Soc. 148 (2001) A164.

    Article  CAS  Google Scholar 

  21. N. Li, C. R. Martin, and B. Scrosati, J. Power Sources 97–98 (2001) 240.

    Article  Google Scholar 

  22. N. Li, D. T. Mitchell, K.-P. Lee, and C. R. Martin, J. Electrochem. Soc. 150 (2003) A979.

    Article  CAS  Google Scholar 

  23. M. Nishizawa, Mukai, K., Kuwabata, S., Martin, C. R., Yoneyama, H., J. Electrochem. Soc. 144 (1997) 1923

    Google Scholar 

  24. C. J. Patrissi and C. R. Martin, J. Electrochem. Soc. 146 (1999) 3176.

    Article  CAS  Google Scholar 

  25. C. J. Patrissi and C. R. Martin, J. Electrochem. Soc. 148 (2001) A1247.

    Article  CAS  Google Scholar 

  26. C. R. Sides, N. Li, C. J. Patrissi, B. Scrosati, and C. R. Martin, MRS Bullet. 27 (2002) 604.

    CAS  Google Scholar 

  27. C. R. Sides and C. R. Martin, Adv. Mater. 17 (2005), in press.

    Google Scholar 

  28. C. R. Sides, F. Croce, V. Young, C. R. Martin, and B. Scrosati, Electrochem. Solid St. Letters 8 (2005) A484.

    Article  CAS  Google Scholar 

  29. B. A. Johnson and R. E. White, J. Power Sources 70 (1998) 48.

    Article  CAS  Google Scholar 

  30. L. E. Fransson, T. Edstrom, K. Gustafsson T., and Thomas, J.G., J. Power Sources 101 (2001) 1.

    Article  CAS  Google Scholar 

  31. C. H. Lu and Lin S.-W., J. Power Sources 97–98 (2001) 458.

    Article  Google Scholar 

  32. J. C. Lytle, H. Yan, N. S. Ergang, W. H. Smyrl, and A. Stein, J. Mater. Chem. 14 (2004) 1616.

    Article  CAS  Google Scholar 

  33. GE Osmotics, Inc., Product Guide, http://www.osmolabstore. com.

    Google Scholar 

  34. R. L. Fleisher, P. B. Price, and R. M. Walker, Nuclear Tracks in Solids, University of California Press, Berkely, 1975.

    Google Scholar 

  35. P. Apel, Radial Meas. 34 (2001) 559.

    Article  CAS  Google Scholar 

  36. Poretics, Product Guide (1995).

    Google Scholar 

  37. C. R. Martin, M. Nishizawa, K. Jirage, and M. Kang, J. Phys. Chem. B 105 (2001) 1925.

    Article  CAS  Google Scholar 

  38. A. Despic and V.P. Parkhutik, in Modern Aspects of Electrochemistry, Vol. 20, Ed. by J. O. Bockris, R. E. White, and B. E. Conway, Plenum Press, New York, (1989),Ch.6,p.401.

    Google Scholar 

  39. G. L. Hornyak, C. J. Patrissi, and C. R. Martin, J. Phys. Chem. B 101 (1997) 1548.

    Article  CAS  Google Scholar 

  40. C. A. Foss, Jr., G. L. Hornyak, J. A. Stockert, and C. R. Martin, J. Phys. Chem. 98 (1994) 2963.

    Article  CAS  Google Scholar 

  41. S. B. Lee, D. T. Mitchell, L. Trofin, T. K. Nevanen, H. Soederlund, and C. R. Martin, Science 296 (2002) 2198.

    Article  CAS  Google Scholar 

  42. W. C. West, N. V. Myung, J. F. Whitacre, and B. V. Ratnakumar, J. Power Sources 126 (2004) 203.

    Article  CAS  Google Scholar 

  43. H. Yan, S. Sokolov, J. C. Lytle, A. Stein, F. Zhang, and W. H. Smyrl, J. Electrochem. Soc. 150 (2003) Al 102.

    Google Scholar 

  44. M. Thackeray, Nat. Mater. 1 (2002) 81.

    Article  CAS  Google Scholar 

  45. A. J. Bard and L. R. Faulkner, in Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, New York, NY, (1980)

    Google Scholar 

  46. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka, Science 276 (1997) 1395.

    Article  CAS  Google Scholar 

  47. I. A. Courtney and J. R. Dahn, J. Electrochem. Soc. 144 (1997) 2943.

    Article  CAS  Google Scholar 

  48. Joint Commission on Powder Diffraction Standards, International Center for Diffraction Data, File 41–1445.

    Google Scholar 

  49. E. J. Plichta, M. Hendrickson, R. Thompson, G. Au, W. K. Behl, M. C. Smart, B. V. Ratnakumar, and S. Surampudi, J. Power Sources 94 (2001) 160.

    Article  CAS  Google Scholar 

  50. M. Salomon, H. P. Lin, E. Plichta, and M. Hendrickson, in Advances in Lithium-Ion Batteries, Ed. by W. Van Klinken and B. Scrosati, Kluwer Academic/Plenum Publishers, New York, 2002, p. 309.

    Chapter  Google Scholar 

  51. G. Nagasubramanian, J. of Appl. Electrochem. 31 (2001) 99.

    Article  Google Scholar 

  52. H. P. Lin, D. Chua, M. Salomon, H. C. Shiao, M. Hendrickson, E. Plichta, and S. Slane, Electrochem. Solid St. 4 (2001) A71.

    Article  CAS  Google Scholar 

  53. C.K. Huang, J.S. Sakamoto, J. Wolfenstine, and S. Surampudi, J. Electrochem. Soc. 147 (2000) 2893.

    Article  CAS  Google Scholar 

  54. B. V. Ratnakumar, M. C. Smart, C. K. Huang, D. Perrone, S. Surampudi, and S. G. Greenbaum, Electrochim. Acta 45 (2000) 1513.

    Article  CAS  Google Scholar 

  55. M. C. Smart, B. V. Ratnakumar, and S. Surampudi, J. Electrochem. Soc. 146 (1999) 486.

    Article  CAS  Google Scholar 

  56. C. Delmas, H. Cognac-Auradou, J. M. Cocciantelli, M. Menetrier, and J. P. Doumerc, Solid State Ionics 69 (1994) 257.

    Article  CAS  Google Scholar 

  57. A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, and J. B. Goodenough, J. Electrochem. Soc. 144 (1997) 1609.

    Article  CAS  Google Scholar 

  58. N. Ravet, Y. Chouinard, J. F. Magnan, S. Besner, M. Gauthier, and M. Armand, J. Power Sources 97–98 (2001) 503.

    Article  Google Scholar 

  59. H. Huang, S.-C. Yin, and L. F. Nazar, Electrochem. Solid St. 4 (2001) A170.

    Article  CAS  Google Scholar 

  60. G. Arnold, J. Garche, R. Hemmer, S. Strobele, C. Vogler, and M. Wohlfahrt-Mehrens, J. Power Sources 119–121 (2003) 247.

    Article  Google Scholar 

  61. S.-Y. Chung, J. T. Bloking, and Y.-M. Chiang, Nat. Mater. 1 (2002) 123.

    Article  CAS  Google Scholar 

  62. C. R. Martin, C. R. Sides, F. Croce, and B. Scrosati, A high rate Electrically conductive material and a method of making the same, U.S. Patent pending (2004).

    Google Scholar 

  63. F. Croce, Epifanio, A. D., Hassoun, J., Deptula, A., Olczac, T., and Scrosati, B., Electrochem. Solid St. 5 (2002) A47.

    Article  CAS  Google Scholar 

  64. H. Masuda, and M. Satoh, Jpn J. Appl. Phys. 2 35 (1996) L126.

    Article  CAS  Google Scholar 

  65. J. S. Gnanaraj, M. D. Levi, E. Levi, G. Salitra, D. Aurbach, J. E. Fischer, and A. Claye, J. Electrochem. Soc. 148 (2001) A525.

    Article  CAS  Google Scholar 

  66. M. Kang, S. Yu, N. Li, and C. R. Martin, Small 1 (2005) 69.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sides, C.R., Martin, C.R. (2007). Nanomaterials in Li-Ion Battery Electrode Design. In: White, R.E., Vayenas, C.G., Gamboa-Aldeco, M.E. (eds) Modern Aspects of Electrochemistry No. 40. Modern Aspects of Electrochemistry, vol 40. Springer, New York, NY. https://doi.org/10.1007/978-0-387-46106-9_3

Download citation

Publish with us

Policies and ethics