Skip to main content

Modeling Adaptive Behavior in Event-Driven Environments

Temporally Explicit Individual-Based Ecology

  • Chapter
Temporal Dimensions of Landscape Ecology

Abstract

The dynamics of ecological systems are driven by continuous processes and discrete events. Events typically are of short duration but with longlasting and usually significant ecological effects. This implies that to understand the ecological significance of events, for example, rainfall events, disturbance events, or resource pulses, we need to understand how individual organisms respond to short-term changes in their environment. Individual-based models that incorporate the adaptive behavior of individuals are an ideal tool to explore the consequences of events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bradbury, R.B., Payne, R.J.H., Wilson, J.D., and Krebs, J.R. 2001. Predicting population responses to resource management. Trends in Ecology and Evolution 16:440–445.

    Article  Google Scholar 

  • Caldow, R.W.G., Beadman, H.A., McGrorty, S., Stillman, R.A., GossCustard, J.D., Durell, S.E.A.L., West, A.D., Kaiser, M.J., Mould, K., and Wilson, A. 2004. A behavior-based modeling approach to reducing shorebird-shellfish conflicts. Ecological Applications 14:1411–1427.

    Article  Google Scholar 

  • Clarke, R.T., and Goss-Custard, J.D. 1996. The Exe estuary oystercatcher-mussel model. Pages 390–393 in Goss-Custard, J.D., ed. The Oystercatcher: From Individuals to Populations. Oxford: Oxford University Press.

    Google Scholar 

  • Clements, F.E. 1916. Plant succession. An analysis of the development of vegetation. Carnegie Institution of Washington, Publication No. 242, Washington.

    Google Scholar 

  • Cooper, W.S. 1913. The climax forest of Isle Royale, Lake Superior, and its development. Botanical Gazette 55:1–44, see also pages 115–140, 189–235.

    Article  Google Scholar 

  • Durell, S.E.A., Le, V. dit, Stillman, R.A., Triplet, P., Aulert, C., dit Bio, D.O., Bouchet, A., Duhamel, S., Mayot, S., and Goss-Custard, J.D. 2005. Modelling the efficacy of proposed mitigation areas for shorebirds: A case study on the Seine estuary, France. Biological Conservation 123:67–77.

    Article  Google Scholar 

  • Elton, C. 1927. Animal Ecology. London: Sidgwick and Jackson.

    Google Scholar 

  • Fahse, L., Wissel, C., and Grimm, V. 1998. Reconciling classical and individual-based approaches in theoretical population ecology: A protocol for extracting population parameters from individual-based models. American Naturalist 152:838–852.

    Article  Google Scholar 

  • Friederichs, K. 1928. Waldkatastrophen in biozönotischer Betrachtung. Anz. Schädling-skde. 4:139–142.

    Article  Google Scholar 

  • Gleason, H.A. 1917. The structure and development of the plant association. Bulletin of Torrey Botanical Club 44:463–481.

    Article  Google Scholar 

  • Goel, N.S., and Richter-Dyn, N. 1974. Stochastic Models in Biology. New York, San Francisco, London: Academic Press.

    Google Scholar 

  • Goss-Custard, J.D. 1980. Competition for food and interference among waders. Ardea 68:31–52.

    Google Scholar 

  • Goss-Custard, J.D. 1985. Foraging behaviour of wading birds and the carrying capacity of estuaries. Pages 169–188 in Sibly, R.M., and Smith, R.H., ed. Behavioural Ecology: Ecological Consequences of Adaptive Behaviour. Oxford: Blackwells.

    Google Scholar 

  • Goss-Custard, J.D., Caldow, R.W.G., Clarke, R.T., Durell, S.E.A.l.V.d., and Sutherland, W.J. 1995a. Deriving population parameters from individual variations in foraging behaviour. 1. Empirical game-theory distribution model of oystercatchers Haematopus ostralegus feeding on mussels Mytilus edulis. Journal of Animal Ecology 64:265–276.

    Article  Google Scholar 

  • Goss-Custard, J.D., Clarke, R.T., Durell, S.E.A., Le V. dit, Caldow, R.W.G., and Ens, B.J. 1995b. Population consequences of winter habitat loss in a migratory shorebird: II. Model predictions. Journal of Applied Ecology 32:334–348.

    Google Scholar 

  • Goss-Custard, J.D., and Durell, S.E.A.l.d. 1990. Bird behaviour and environmental planning: Approaches in the study of wader populations. The Ibis 132:273–282.

    Google Scholar 

  • Goss-Custard, J.D., and Stillman, R.A. In press. Individual-based models and the management of shorebird populations. Natural Resource Modeling.

    Google Scholar 

  • Goss-Custard, J.D., Stillman, R.A., West, A.D., Caldow, R.W.G., Triplet, P., Durell, S.E.A.l.V.d., and McGrorty, S. 2004. When enough is not enough: Shorebirds and shellfishing. Proceedings of the Royal Society of London B 271:233–237.

    Article  CAS  Google Scholar 

  • Goss-Custard, J.D., and Sutherland, W.J. 1997. Individual behaviour, populations and conservation. Pages 373–395 in Krebs, J.R., and Davies, N.B., eds. Behavioural Ecology: An Evolutionary Approach. Oxford: Blackwell Science.

    Google Scholar 

  • Goss-Custard, J.D., Triplet, P., Sueur, F., and West, A.D. 2006. Critical thresholds of disturbance by people and raptors in foraging wading birds. Biological Conservation 127:88–97.

    Article  Google Scholar 

  • Grimm, V. 1999. Ten years of individual-based modelling in ecology: What have we learned, and what could we learn in the future? Ecological Modelling 115:129–148.

    Article  Google Scholar 

  • Grimm, V., and Railsback, S.F. 2005. Individual-based Modeling and Ecology. Princeton: Princeton University Press.

    Google Scholar 

  • Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M., Railsback, S.F., Thulke, H.-H., Weiner, J., Wiegand, T., and DeAngelis, D.L. 2005. Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science 310:987–991.

    Article  PubMed  CAS  Google Scholar 

  • Grimm, V., and Storch, I. 2000. Minimum viable population size of capercaillie Tetrao urogallus: Results from a stochastic model. Wildlife Biology 6:219–225.

    Google Scholar 

  • Hölker, F., and Breckling, B. 2001. An individual-based approach to depict the influence of the feeding strategy on the population structure of roach (Rutilus rutilus L.). Limnologica 31:69–79.

    Google Scholar 

  • Hölker, F., and Breckling, B. 2002. Influence of activity in a heterogeneous environment on the dynamics of fish growth: An individual-based model of roach. Journal of Fish Biology 60:1170–1189.

    Google Scholar 

  • Hölker, F., and Breckling, B. 2005. A spatial explicit bioenergetics individual-based model of roach (Rutilus rutilus) to investigate emergent properties at the organismal and at the population level. Ecological Modelling 186:406–426.

    Article  Google Scholar 

  • Hölker, F., Haertel, S.S., Steiner, S., and Mehner, T. 2002. Effects of piscivore-mediated habitat use on growth, diet and zooplankton consumption of roach: An individual-based modelling approach. Freshwater Biology 47:2345–2358.

    Article  Google Scholar 

  • Hölker, F., and Mehner, T. 2005. Simulation of trait-mediated and density-mediated indirect effects of piscivorous predators on a lake food web. Basic and Applied Ecology 6:289–300.

    Article  Google Scholar 

  • Jax, K. 1999. Natürliche Störungen—ein nützliches Konzept für ökologie und Naturschutz? Zeitschrift für ökologie und Naturschutz 7:241–253.

    Google Scholar 

  • Kaiser, M.J., Elliott, A.J., Galanidi, M., Rees, E.I.S., Caldow, R.W.G., Stillman, R.A., Sutherland, W.J., and Showler, D.A. 2005. Predicting the displacement of common scoter Melanitta nigra from benthic feeding areas due to offshore windfarms. University of Wales Bangor report to COWRIE, pp. 266.

    Google Scholar 

  • Minar, N., Burkhart, R., Langton, C., and Askenazi, M. 1996. The Swarm simulation system: A toolkit for building multi-agent simulations. Working Paper 96-06-042, Santa Fe Institute, Santa Fe. 1996.

    Google Scholar 

  • Mullon C., Fréon, P., Parada, C., van der Lingen, C., and Huggett, J. 2003. From particles to individuals: Modelling the early stages of anchovy (Engraulis capensis/encrasicolus) in the southern Benguela. Fisheries Oceanography 12:396–406.

    Article  Google Scholar 

  • Odum, W.E., Odum, E.P., and Odum, H.T. 1995. Nature's pulsing paradigm. Estuaries 4:547–555.

    Article  Google Scholar 

  • Ostfeld, R.S., and Keesing, F. 2000. Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends in Ecology and Evolution 15:232–237.

    Article  PubMed  Google Scholar 

  • Pettifor, R.A., Caldow, R.W.G., Rowcliffe, J.M., Goss-Custard, J.D., Black, J.M., Hodder, K.H., Houston, A.I., Lang, A., and Webb, J. 2000. Spatially explicit, individual-based, behavioural models of the annual cycle of two migratory goose populations. Journal of Applied Ecology 37:103–135.

    Article  Google Scholar 

  • Pickett, S.T.A., and White, P.S., eds. 1985. The Ecology of Natural Disturbance and Patch Dynamics. San Diego: Academic Press.

    Google Scholar 

  • Railsback, S.F. 2001a. Getting “results”: The pattern-oriented approach to analyzing natural systems with individual-based models. Natural Resource Modeling 14:465–474.

    Article  Google Scholar 

  • Railsback, S.F. 2001b. Concepts from complex adaptive systems as a framework for individual-based modelling. Ecological Modelling 139:47–62.

    Article  Google Scholar 

  • Railsback S.F., and Harvey, B.C. 2001. Individual-based model formulation for cutthroat trout, Little Jonas Creek, California. General Technical Report PSW-GTR-182. Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, Albany, CA.

    Google Scholar 

  • Railsback, S.F., and Harvey, B.C. 2002. Analysis of habitat selection rules using an individual-based model. Ecology 83:1817–1830.

    Google Scholar 

  • Railsback, S.F., Harvey, B.C., Lamberson, R.H., Lee, D.E., Claasen, N.J., and Yoshihara, S. 2002. Population-level analysis and validation of an individual-based cuthroat trout model. Natural Resource Modeling 14:465–474.

    Google Scholar 

  • Railsback, S.F., Lamberson, R.H., Harvey, B.C., and Duffy, W.E. 1999. Movement rules for individual-based models of stream fish. Ecological Modelling 123:73–89.

    Article  Google Scholar 

  • Railsback, S.F., Stauffer, H.B., and Harvey, B.C. 2003. What can habitat preference models tell us? Tests using a virtual trout population. Ecological Applications 13:1580.

    Article  Google Scholar 

  • Robinson, R.A., and Sutherland, W.J. 2002. Post-war changes in arable farming and biodiversity in Great Britain. Journal of Applied Ecology 39:157–176.

    Article  Google Scholar 

  • Stephens, P.A., Freckleton, R.P., Watkinson, A.R., and Sutherland, W.J. 2003. Predicting the response of farmland bird populations to changing food supplies. Journal of Applied Ecology 40:970–983.

    Article  Google Scholar 

  • Stillman, R.A., Goss-Custard, J.D., West, A.D., Durell, S., Caldow, R.W.G., McGrorty, S., and Clarke, R.T. 2000. Predicting mortality in novel environments: Tests and sensitivity of a behaviour-based model. Journal of Applied Ecology 37:564–588.

    Article  Google Scholar 

  • Stillman, R.A., Goss-Custard, J.D., West, A.D., Durell, S., McGrorty, S., Caldow, R.W.G., Norris, K.J., Johnstone, I.G., Ens, B.J., Van der Meer, J., and Triplet, P. 2001. Predicting shorebird mortality and population size under different regimes of shellfishery management. Journal of Applied Ecology 38:857–868.

    Article  Google Scholar 

  • Stillman, R.A., West, A.D., Goss-Custard, J.D., Caldow, R.W.G., McGrorty, S., Durell, S.E.A.l.V.d., Yates, M.G., Atkinson, P.W., Clark, N.A., Bell, M.C., Dare, P.J., and Mander, M. 2003. An individual behaviour-based model can predict shorebird mortality using routinely collected shellfishery data. Journal of Applied Ecology 40:1090–1101.

    Article  Google Scholar 

  • Stillman, R.A., Caldow, R.W.G., Durell, S.E.A.l.V.d., West, A.D., McGrorty, S., Goss-Custard, J.D., Perez-Hurtado, A., Castro, M., Estrella, S.M., Masero, J.A., Rodríguez-Pascual, F.H., Triplet, P., Loquet, N., Desprez, M., Fritz, H., Clausen, P., Ebbinge, B.S., Norris, K., and Mattison, E. 2005a. Coast bird diversity—maintaining migratory coastal bird diversity: Management through individual-based predictive population modelling. Centre for Ecology and Hydrology for the Commission of the European Communities.

    Google Scholar 

  • Stillman, R.A., West, A.D., Durell, S.E.A.l.V.d., Caldow, R.W.G., McGrorty, S., Yates, M., Garbutt, R.A., Yates, T.J., Rispin, W.E., and Frost, N.J. 2005b. Estuary special protection areas—establishing baseline targets for shorebirds. Final report. English Nature.

    Google Scholar 

  • Stillman, R.A., West, A.D., Goss-Custard, J.D., McGrorty, S., Frost, N.J., Morrisey, D.J., Kenny, A.J., and Drewitt, A. 2005c. Predicting site quality for shorebird communities: A case study on the Humber estuary, UK. Marine Ecology Progress Series 305:203–217.

    Google Scholar 

  • Sutherland, W.J. 1996. From Individual Behaviour to Population Ecology. Oxford: Oxford University Press.

    Google Scholar 

  • Uchmański, J., and Grimm, V. 1996. Individual-based modelling in ecology: What makes the difference? Trends in Ecology and Evolution 11:437–441.

    Article  Google Scholar 

  • Walker, B.H. 1993. Rangeland ecology: Understanding and managing change. Ambio 22:80–87.

    Google Scholar 

  • Van Winkle, W., Jager, H.I., Railsback, S.F., Holcomb, B.D., Studley, T.K., and Baldrige, J.E. 1998. Individual-based model of sympatric populations of brown and rainbow trout for instream flow assessment: Model description and calibration. Ecological Modelling 110:175–207.

    Article  Google Scholar 

  • Warming, E. 1896. Lehrbuch der ökologischen Pflanzengeographie. Eine Einführung in die Kenntnis der Pflanzenvereine. Berlin: Gebrüder Bornträger.

    Google Scholar 

  • West, A.D., Goss-Custard, J.D., McGrorty, S., Stillman, R.A., Durell, S.E.A.l.V.d., Stewart, B., Walker, P., Palmer, D.W., and Coates, P. 2003. The Burry shellfishery and oystercatchers: Using a behaviour-based model to advise on shellfishery management policy. Marine Ecology Progress Series 248:279–292.

    Google Scholar 

  • West, A.D., Goss-Custard, J.D., Stillman, R.A., Caldow, R.W.G., Durell, S.E.A.l.V.d., and McGrorty, S. 2002. Predicting the impacts of disturbance on shorebird mortality using a behaviour-based model. Biological Conservation 106:319–328.

    Article  Google Scholar 

  • White, P.S. 1979. Pattern, process, and natural disturbance in vegetation. The Botanical Review 45:229–299.

    Article  Google Scholar 

  • White, P.S., and Jentsch, A. 2001. The search for generality in studies of disturbance and ecosystem dynamics. Progress in Botany 62:399–449.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

GRIMM, V., STILLMAN, R., JAX, K., GOSS-CUSTARD, J. (2007). Modeling Adaptive Behavior in Event-Driven Environments. In: Bissonette, J.A., Storch, I. (eds) Temporal Dimensions of Landscape Ecology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-45447-4_5

Download citation

Publish with us

Policies and ethics