Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 594))

Abstract

The most abundant cytoplasmic chaperone of eukaryotic cells, Hsp90 is a hub in developmental regulatory networks and the first example described of the phenomenon of molecular buffering. As a chaperone for many different signaling proteins, Hsp90 maintains the clarity and strength of communication within and between cells, concealing developmental and stochastic variations that otherwise cause abrupt morphological changes in a large variety of organisms, including Drosophila and Arabidopsis. The chapter provides a framework for understanding how Hsp90 controls the sudden appearance of novel morphologies. We start with a discussion of the longstanding problem of hidden polygenic variation and then introduce the idea of signal transduction thresholds in mediating the effect of Hsp90 on the expression of phenotypic variation. This leads to a discussion of the role of nonlinearity in creating thresholds for sudden changes in cellular responses to developmental signals. We end with speculation on the potentially pivotal role of Hsp90 in controlling the developmental networks that determine morphological stasis and change in evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Csermely P, Schnaider T, Soti C et al. The 90-kDa molecular chaperone family: Structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 1998;79:129–168.

    Article  PubMed  CAS  Google Scholar 

  2. Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 2003;228:111–133.

    CAS  Google Scholar 

  3. Zhao R, Davey M, Hsu YC et al. Navigating the chaperone network: An integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 2005;120:715–727.

    Article  PubMed  CAS  Google Scholar 

  4. Knoll AH, Carroll SB. Early animal evolution: Emerging views from comparative biology and geology. Science 1999;284:2129–2137.

    Article  PubMed  CAS  Google Scholar 

  5. Jeong H, Tombor B, Albert R et al. The large-scale organization of metabolic networks. Nature 2000;407:651–654.

    Article  PubMed  CAS  Google Scholar 

  6. Albert R, Jeong H, Barabasi AL. Error and attack tolerance of complex networks. Nature 2000;406:378–382.

    Article  PubMed  CAS  Google Scholar 

  7. Ravasz E, Somera AL, Mongru DA et al. Hierarchical organization of modularity in metabolic networks. Science 2002;297:1551–1555.

    Article  PubMed  CAS  Google Scholar 

  8. Barabási AL. Linked: The New Science of Networks. Cambridge: Perseus Pub, 2002:280.

    Google Scholar 

  9. Rutherford SL, Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature 1998;396:336–342.

    Article  PubMed  CAS  Google Scholar 

  10. Rutherford SL. From genotype to phenotype: Buffering mechanisms and the storage of genetic information. Bioessays 2000;22:1095–1105.

    Article  PubMed  CAS  Google Scholar 

  11. Waddington CH. The Strategy of the Genes; a Discussion of Some Aspects of Theroetical Biology. Vol. ix. New York: Macmillan, 1957:262.

    Google Scholar 

  12. Waddington C. Evolutionary systems-Animal and human. Nature 1950;183:1634–1638.

    Article  Google Scholar 

  13. Evaluating Human Genetic Diversity. Commission on Life Sciences, National Research Council. Washington, DC: National Academy Press, 1997.

    Google Scholar 

  14. Begun DJ, Aquadro CF. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature 1992;365:519–520.

    Article  Google Scholar 

  15. Moriyama EN, Powell JR. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol 1996;13:261–277.

    PubMed  CAS  Google Scholar 

  16. Powell JR. Progress and Prospects in Evolutionary Biology: The Drosophila Model. Vol. xiv. New York: Oxford University Press, 1997:562.

    Google Scholar 

  17. Kimura M. The Neutral Theory of Molecular Evolution. Vol. xv. Cambridge [Cambridgeshire], New York: Cambridge University Press, 1983:367.

    Google Scholar 

  18. Lynch M, Walsh B. Genetics and Analysis of Quantitative Traits. Vol. xvi. Sunderland: Sinauer, 1998:980.

    Google Scholar 

  19. Hartman JL, Garvik B, Hartwell L. Principles for the buffering of genetic variation. Science 2001;291:1001–1004.

    Article  PubMed  CAS  Google Scholar 

  20. Perera FP. Environment and cancer: Who are susceptible? Science 1997;278:1068–1073.

    Article  PubMed  CAS  Google Scholar 

  21. Mackay TF. Quantitative trait loci in Drosophila. Nat Rev Genet 2001;2:11–20.

    Article  PubMed  CAS  Google Scholar 

  22. Morgan TH. Variability of eyeless. Publs Carnegie Instn 1929;399:139–168.

    Google Scholar 

  23. Haider G, Callaerts P, Gehring WJ. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 1995;267:1788–1792.

    Article  Google Scholar 

  24. Gehring WJ. The master control gene for morphogenesis and evolution of the eye. Genes Cells 1996;1:11–15.

    Article  PubMed  CAS  Google Scholar 

  25. Bergman A, Siegal ML. Evolutionary capacitance as a general feature of complex gene networks. Nature 2003;424:549–552.

    Article  PubMed  CAS  Google Scholar 

  26. Fares MA, Ruiz-Gonzalez MX, Moya A et al. Endosymbiotic bacteria: groEL buffers against deleterious mutations. Nature 2002;417:398.

    Article  PubMed  CAS  Google Scholar 

  27. Chow KC. Hsp70 (DnaK) — An evolution facilitator? Trends Genet 2000;16:484–485.

    Article  PubMed  CAS  Google Scholar 

  28. Rutherford SL. Between genotype and phenotype: Protein chaperones and evolvability. Nat Rev Genet 2003;4:263–274.

    Article  PubMed  CAS  Google Scholar 

  29. Sreedhar AS, Soti C, Csermely P. Inhibition of Hsp90: A new strategy for inhibiting protein ki-nases. Biochim Biophys Acta 2004;1697:233–242.

    PubMed  CAS  Google Scholar 

  30. Whitesell L, Mimnaugh EG, De Costa B et al. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: Essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 1994;91:8324–8328.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang H, Burrows F. Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med 2004;82:488–499.

    PubMed  CAS  Google Scholar 

  32. Falconer DS, Mackay TFC. Introduction to Quantitative Genetics. Vol. xiii. Essex, England: Longman, 1996:464.

    Google Scholar 

  33. Kimura Y, Rutherford SL, Miyata Y et al. Cdc37 is a molecular chaperone with specific functions in signal transduction. Genes Dev 1997;11:1775–1785.

    Article  PubMed  CAS  Google Scholar 

  34. Doyle H, Bishop J. Torso, a receptor tyrosine kinase required for embryonic pattern formation, shares substrates with the sevenless and EGF-R pathways in Drosophila. Genes Dev 1993;7:633–646.

    Article  PubMed  CAS  Google Scholar 

  35. Cutforth T, Rubin GM. Mutations in Hsp83 and cdc37 impair signaling by the sevenless receptor tyrosine kinase in Drosophila. Cell 1994;77:1027–1036.

    Article  PubMed  CAS  Google Scholar 

  36. Daga A, Banerjee U. Resolving the sevenless pathway using sensitized genetic backgrounds. Cell Mol Biol Res 1994;40:245–251.

    PubMed  CAS  Google Scholar 

  37. Simon M, Bowtell D, Dodson G et al. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 1991;67:701–716.

    Article  PubMed  CAS  Google Scholar 

  38. Dickson BJ, van der Straten A, Dominguez M et al. Mutations Modulating Raf signaling in Drosophila eye development. Genetics 1996;142:163–171.

    PubMed  CAS  Google Scholar 

  39. van der Straten A, Rommel C, Dickson B et al. The heat shock protein 83 (Hsp83) is required for Raf-mediated signalling in Drosophila. EMBO J 1997;16:1961–1969.

    Article  PubMed  Google Scholar 

  40. Hasty J, Pradines J, Dolnik M et al. Noise-based switches and amplifiers for gene expression. Proc Natl Acad Sci USA 2000;97:2075–2080.

    Article  PubMed  CAS  Google Scholar 

  41. Paulsson J, Berg OG, Ehrenberg M. Stochastic focusing: Fluctuation-enhanced sensitivity of intracellular regulation. Proc Natl Acad Sci USA 2000;97:7148–7153.

    Article  PubMed  CAS  Google Scholar 

  42. Csermely P. Weak Links: Stabilizers of Complex Systems from Proteins to Social Networks. Heidelberg: Springer Verlag, 2006.

    Google Scholar 

  43. Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. Nature 2000;403:339–342.

    Article  PubMed  CAS  Google Scholar 

  44. Goldbeter A, Koshland Jr DE. Ultrasensitivity in biochemical systems controlled by covalent modification. Interplay between zero-order and multistep effects. J Biol Chem 1984;259:14441–14447.

    PubMed  CAS  Google Scholar 

  45. Ferrell Jr JE, Machleder EM. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 1998;280:895–898.

    Article  PubMed  CAS  Google Scholar 

  46. Csermely P. Strong links are important, but weak links stabilize them. Trends Biochem Sci 2004;29:331–334.

    Article  PubMed  CAS  Google Scholar 

  47. True HL, Berlin I, Lindquist SL. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 2004;431:184–187.

    Article  PubMed  CAS  Google Scholar 

  48. Wade MJ, Johnson NA, Jones R et al. Genetic variation segregating in natural populations of Tribolium castaneum affecting traits observed in hybrids with T. freemani. Genetics 1997;147:1235–1247.

    PubMed  CAS  Google Scholar 

  49. Sangster TA, Lindquist S, Queitsch C. Under cover: Causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays 2004;26:348–362.

    Article  PubMed  CAS  Google Scholar 

  50. Bouwmeester T, Bauch A, Ruffner H et al. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 2004;6:97–105.

    Article  PubMed  CAS  Google Scholar 

  51. Broemer M, Krappmann D, Scheidereit C. Requirement of Hsp90 activity for IkappaB kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-kappaB activation. Oncogene 2004;23:5378–5386.

    Article  PubMed  CAS  Google Scholar 

  52. Xu W, Mimnaugh E, Rosser MF et al. Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein Hsp90. J Biol Chem 2001;276:3702–3708.

    Article  PubMed  CAS  Google Scholar 

  53. Chiosis G, Timaul MN, Lucas B et al. A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem Biol 2001;8:289–299.

    Article  PubMed  CAS  Google Scholar 

  54. Fujita N, Sato S, Ishida A et al. Involvement of Hsp90 in signaling and stability of 3-phosphoinositide-dependent kinase-1. J Biol Chem 2002;277:10346–10353.

    Article  PubMed  CAS  Google Scholar 

  55. Sehgal PB. Plasma membrane rafts and chaperones in cytokine/STAT signaling. Acta Biochim Pol 2003;50:583–594.

    PubMed  CAS  Google Scholar 

  56. Pratt WB, Welsh MJ. Chaperone functions of the heat shock proteins associated with steroid receptors. Semin Cell Biol 1994;5:83–93.

    Article  PubMed  CAS  Google Scholar 

  57. Pandey P, Saleh A, Nakazawa A et al. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 2000;19:4310–4322.

    Article  PubMed  CAS  Google Scholar 

  58. Zhao C, Wang E. Heat shock protein 90 suppresses tumor necrosis factor alpha induced apoptosis by preventing the cleavage of Bid in NIH3T3 fibroblasts. Cell Signal 2004;16:313–321.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzannah Rutherford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Rutherford, S., Knapp, J.R., Csermely, P. (2007). Hsp90 and Developmental Networks. In: Csermely, P., Vígh, L. (eds) Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks. Advances in Experimental Medicine and Biology, vol 594. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39975-1_16

Download citation

Publish with us

Policies and ethics