Skip to main content

Mechanisms of Activation and Regulation of the Heat Shock-Sensitive Signaling Pathways

  • Chapter
Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 594))

Abstract

Heat shock (HS), like many other stresses, induces specific and highly regulated signaling cascades that promote cellular homeostasis. The three major mitogen-activated protein kinases (MAPK) and protein kinase B (PKB/Akt) are the most notable of these HS-stimulated pathways. Their activation occurs rapidly and sooner than the transcriptional upregulation of heat shock proteins (Hsp), which generate a transient state of extreme resistance against subsequent thermal stress. The direct connection of these signaling pathways to cellular death or survival mechanisms suggests that they contribute importantly to the HS response. Some of them may counteract early noxious effects of heat, while others may bolster key apoptosis events. The triggering events responsible for activating these pathways are unclear. Protein denaturation, specific and nonspecific receptor activation, membrane alteration and chromatin structure perturbation are potential initiating factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gerner EW, Schneider MJ. Induced thermal resistance in HeLa cells. Nature 1975; 256:500–502.

    Article  PubMed  CAS  Google Scholar 

  2. Landry J, Bernier D, Chretien P et al. Synthesis and degradation of heat shock proteins during development and decay of thermotolerance. Cancer Res 1982; 42:2457–2461.

    PubMed  CAS  Google Scholar 

  3. Li GC, Werb Z. Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster fibroblasts. Proc Natl Acad Sci USA 1982; 79:3218–3222.

    Article  PubMed  CAS  Google Scholar 

  4. Subjeck JR, Sciandra JJ, Chao CF et al. Heat shock proteins and biological response to hyperther-mia. Br J Cancer Suppl 1982; 45:127–131.

    Google Scholar 

  5. Lindquist S. The heat-shock response. Annu Rev Biochem 1986; 55:1151–1191.

    Article  PubMed  CAS  Google Scholar 

  6. Hohfeld J, Cyr DM, Patterson C. From the cradle to the grave: Molecular chaperones that may choose between folding and degradation. EMBO Rep 2001; 2:885–890.

    Article  PubMed  CAS  Google Scholar 

  7. Friant S, Meier KD, Riezman H. Increased ubiquitin-dependent degradation can replace the essential requirement for heat shock protein induction. EMBO J 2003; 22:3783–3791.

    Article  PubMed  CAS  Google Scholar 

  8. Ananthan J, Goldberg AL, Voellmy R. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 1986; 232:522–524.

    Article  PubMed  CAS  Google Scholar 

  9. Voellmy R. On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 2004; 9:122–133.

    Article  PubMed  CAS  Google Scholar 

  10. Sarge KD, Murphy SP, Morimoto RI. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 1993; 13:1392–1407.

    PubMed  CAS  Google Scholar 

  11. Marchler G, Wu C. Modulation of Drosophila heat shock transcription factor activity by the molecular chaperone DROJ1. EMBO J 2001; 20:499–509.

    Article  PubMed  CAS  Google Scholar 

  12. Morimoto RI. Cells in stress: Transcriptional activation of heat shock genes. Science 1993; 259:1409–1410.

    Article  PubMed  CAS  Google Scholar 

  13. Zou J, Guo Y, Guettouche T et al. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 1998; 94:471–480.

    Article  PubMed  CAS  Google Scholar 

  14. Huot J, Lambert H, Lavoie JN et al. Characterization of 45-kDa/54-kDa HSP27 kinase, a stress-sensitive kinase which may activate the phosphorylation-dependent protective function of mammalian 27-kDa heat-shock protein HSP27. Eur J Biochem 1995; 227:416–427.

    Article  PubMed  CAS  Google Scholar 

  15. Guay J, Lambert H, Gingras-Breton G et al. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 1997; 110:357–368.

    PubMed  CAS  Google Scholar 

  16. Dubois MF, Bensaude O. MAP kinase activation during heat shock in quiescent and exponentially growing mammalian cells. FEBS Lett 1993; 324:191–195.

    Article  PubMed  CAS  Google Scholar 

  17. Adler V, Schaffer A, Kim J et al. UV irradiation and heat shock mediate JNK activation via alternate pathways. J Biol Chem 1995; 270:26071–26077.

    Article  PubMed  CAS  Google Scholar 

  18. Rouse J, Cohen P, Trigon S et al. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 1994; 78:1027–1037.

    Article  PubMed  CAS  Google Scholar 

  19. Widmann C, Gibson S, Jarpe MB et al. Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physiol Rev 1999; 79:143–180.

    PubMed  CAS  Google Scholar 

  20. Garrington TP, Johnson GL. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 1999; 11:211–218.

    Article  PubMed  CAS  Google Scholar 

  21. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001; 410:37–40.

    Article  PubMed  CAS  Google Scholar 

  22. Konishi H, Matsuzaki H, Tanaka M et al. Activation of RAC-protein kinase by heat shock and hyperosmolarity stress through a pathway independent of phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 1996; 93:7639–7643.

    Article  PubMed  CAS  Google Scholar 

  23. Kyriakis JM. Making the connection: Coupling of stress-activated ERK/MAPK (extracellular-signal-regulated kinase/mitogen-activated protein kinase) core signalling modules to extracellular stimuli and biological responses. Biochem Soc Symp 1999; 64:29–48.

    PubMed  CAS  Google Scholar 

  24. Chen F, Torres M, Duncan RF. Activation of mitogen-activated protein kinase by heat shock treatment in Drosophila. Biochem J 1995; 312:341–349.

    PubMed  CAS  Google Scholar 

  25. Aikawa R, Komuro I, Yamazaki T et al. Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J Clin Invest 1997; 100:1813–1821.

    Article  PubMed  CAS  Google Scholar 

  26. Chen W, Martindale JL, Holbrook NJ et al. Tumor promoter arsenite activates extracellular signal-regulated kinase through a signaling pathway mediated by epidermal growth factor receptor and Shc. Mol Cell Biol 1998; 18:5178–5188.

    PubMed  CAS  Google Scholar 

  27. Lin RZ, Hu ZW, Chin JH et al. Heat shock activates c-Src tyrosine kinases and phosphatidylinositol 3-kinase in NIH3T3 fibroblasts. J Biol Chem 1997; 272:31196–31202.

    Article  PubMed  CAS  Google Scholar 

  28. Sachsenmaier C, Radler-Pohl A, Zinck R et al. Involvement of growth factor receptors in the mammalian UVC response. Cell 1994; 78:963–972.

    Article  PubMed  CAS  Google Scholar 

  29. Coffer PJ, Burgering BM, Peppelenbosch MP et al. UV activation of receptor tyrosine kinase activity. Oncogene 1995; 11:561–569.

    PubMed  CAS  Google Scholar 

  30. Rosette C, Karin M. Ultraviolet light and osmotic stress: Activation of the JNK cascade through multiple growth factor and cytokine receptors. Science 1996; 274:1194–1197.

    Article  PubMed  CAS  Google Scholar 

  31. Rao GN. Hydrogen peroxide induces complex formation of SHC-Grb2-SOS with receptor tyrosine kinase and activates Ras and extracellular signal-regulated protein kinases group of mitogen-activated protein kinases. Oncogene 1996; 13:713–719.

    PubMed  CAS  Google Scholar 

  32. Kataoka K, Miura M. Insulin-like growth factor I receptor does not contribute to heat shock-induced Activation of Akt and extracellular signal-regulated kinase (ERK) in mouse embryo fibroblasts. J Radiat Res (Tokyo) 2004; 45:141–144.

    Article  CAS  Google Scholar 

  33. Ng DC, Bogoyevitch MA. The mechanism of heat shock activation of ERK mitogen-activated protein kinases in the interleukin 3-dependent ProB cell line BaF3. J Biol Chem 2000; 275:40856–40866.

    Article  PubMed  CAS  Google Scholar 

  34. Yaglom J, O’Callaghan-Sunol C, Gabai V et al. Inactivation of dual-specificity phosphatases is involved in the regulation of extracellular signal-regulated kinases by heat shock and hsp72. Mol Cell Biol 2003; 23:3813–3824.

    Article  PubMed  CAS  Google Scholar 

  35. Song J, Takeda M, Morimoto RI. Bagl-Hsp70 mediates a physiological stress signalling pathway that regulates Raf-1/ERK and cell growth. Nat Cell Biol 2001; 3:276–282.

    Article  PubMed  CAS  Google Scholar 

  36. Wang X, Martindale JL, Holbrook NJ. Requirement for ERK activation in cisplatin-induced apoptosis. J Biol Chem 2000; 275:39435–39443.

    Article  PubMed  CAS  Google Scholar 

  37. Bacus SS, Gudkov AV, Lowe M et al. Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene 2001; 20:147–155.

    Article  PubMed  CAS  Google Scholar 

  38. Tang D, Wu D, Hirao A et al. ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem 2002; 277:12710–12717.

    Article  PubMed  CAS  Google Scholar 

  39. Ballif BA, Blenis J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ 2001; 12:397–408.

    PubMed  CAS  Google Scholar 

  40. Woessmann W, Meng YH, Mivechi NF. An essential role for mitogen-activated protein kinases, ERKs, in preventing heat-induced cell death. J Cell Biochem 1999; 74:648–662.

    Article  PubMed  CAS  Google Scholar 

  41. Chu B, Soncin F, Price BD et al. Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem 1996; 271:30847–30857.

    Article  PubMed  CAS  Google Scholar 

  42. Holmberg CI, Tran SE, Eriksson JE et al. Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends Biochem Sci 2002; 27:619–627.

    Article  PubMed  CAS  Google Scholar 

  43. He B, Meng YH, Mivechi NF. Glycogen synthase kinase 3beta and extracellular signal-regulated kinase inactivate heat shock transcription factor 1 by facilitating the disappearance of transcription-ally active granules after heat shock. Mol Cell Biol 1998; 18:6624–6633.

    PubMed  CAS  Google Scholar 

  44. Wang X, Grammatikakis N, Siganou A et al. Regulation of molecular chaperone gene transcription involves the serine phosphorylation, 14-3-3 epsilon binding, and cytoplasmic sequestration of heat shock factor 1. Mol Cell Biol 2003; 23:6013–6026.

    Article  PubMed  CAS  Google Scholar 

  45. Wang X, Grammatikakis N, Siganou A et al. Interactions between extracellular signal-regulated protein kinase 1, 14-3-3epsilon, and heat shock factor 1 during stress. J Biol Chem 2004; 279:49460–49469.

    Article  PubMed  CAS  Google Scholar 

  46. Meriin AB, Yaglom JA, Gabai VL et al. Protein-damaging stresses activate c-Jun N-terminal kinase via inhibition of its dephosphorylation: A novel pathway controlled by HSP72. Mol Cell Biol 1999; 19:2547–2555.

    PubMed  CAS  Google Scholar 

  47. Merienne K, Helmlinger D, Perkin GR et al. Polyglutamine expansion induces a protein-damaging stress connecting heat shock protein 70 to the JNK pathway. J Biol Chem 2003; 278:16957–16967.

    Article  PubMed  CAS  Google Scholar 

  48. Palacios C, Collins MK, Perkins GR. The JNK phosphatase M3/6 is inhibited by protein-damaging stress. Curr Biol 2001; 11:1439–1443.

    Article  PubMed  CAS  Google Scholar 

  49. Meriin AB, Gabai VL, Yaglom J et al. Proteasome inhibitors activate stress kinases and induce Hsp72. Diverse effects on apoptosis. J Biol Chem 1998; 273:6373–6379.

    Article  PubMed  CAS  Google Scholar 

  50. Zanke BW, Boudreau K, Rubie E et al. The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat. Curr Biol 1996; 6:606–613.

    Article  PubMed  CAS  Google Scholar 

  51. Nishina H, Fischer KD, Radvanyi L et al. Stress-signalling kinase Sek1 protects thymocytes from apoptosis mediated by CD95 and CD3. Nature 1997; 385:350–353.

    Article  PubMed  CAS  Google Scholar 

  52. Yang D, Tournier C, Wysk M et al. Targeted disruption of the MKK4 gene causes embryonic death, inhibition of c-Jun NH2-terminal kinase activation, and defects in AP-1 transcriptional activity. Proc Natl Acad Sci USA 1997; 94:3004–3009.

    Article  PubMed  CAS  Google Scholar 

  53. Maroni P, Bendinelli P, Zuccorononno C et al. Cellular signalling after in vivo heat shock in the liver. Cell Biol Int 2000; 24:145–152.

    Article  PubMed  CAS  Google Scholar 

  54. Han SI, Oh SY, Woo SH et al. Implication of a small GTPase Rac1 in the activation of c-Jun N-terminal kinase and heat shock factor in response to heat shock. J Biol Chem 2001; 276:1889–1895.

    Article  PubMed  CAS  Google Scholar 

  55. Tournier C, Hess P, Yang DD et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000; 288:870–874.

    Article  PubMed  CAS  Google Scholar 

  56. Deng Y, Ren X, Yang L et al. A JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell 2003; 115:61–70.

    Article  PubMed  CAS  Google Scholar 

  57. Enomoto A, Suzuki N, Liu C et al. Involvement of c-Jun NH2-terminal kinase-1 in heat-induced apoptotic cell death of human monoblastic leukaemia U937 cells. Int J Radiat Biol 2001; 77:867–874.

    Article  PubMed  CAS  Google Scholar 

  58. Yamamoto K, Ichijo H, Korsmeyer SJ. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 1999; 19:8469–8478.

    PubMed  CAS  Google Scholar 

  59. Kharbanda S, Saxena S, Yoshida K et al. Translocation of SAPK/JNK to mitochondria and interaction with Bcl-x(L) in response to DNA damage. J Biol Chem 2000; 275:322–327.

    Article  PubMed  CAS  Google Scholar 

  60. Fuchs SY, Adler V, Buschmann T et al. JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes Dev 1998; 12:2658–2663.

    PubMed  CAS  Google Scholar 

  61. Fuchs SY, Adler V, Pincus MR et al. MEKK1/JNK signaling stabilizes and activates p53. Proc Natl Acad Sci USA 1998; 95:10541–10546.

    Article  PubMed  CAS  Google Scholar 

  62. Dai R, Frejtag W, He B et al. c-Jun NH2-terminal kinase targeting and phosphorylation of heat shock factor-1 suppress its transcriptional activity. J Biol Chem 2000; 275:18210–18218.

    Article  PubMed  CAS  Google Scholar 

  63. Park J, Liu AY. JNK phosphorylates the HSF1 transcriptional activation domain: Role of JNK in the regulation of the heat shock response. J Cell Biochem 2001; 82:326–338.

    Article  PubMed  CAS  Google Scholar 

  64. Gabai VL, Yaglom JA, Volloch V et al. Hsp72-mediated suppression of c-Jun N-terminal kinase is implicated in development of tolerance to caspase-independent cell death. Mol Cell Biol 2000; 20:6826–6836.

    Article  PubMed  CAS  Google Scholar 

  65. Gabai VL, Meriin AB, Mosser DD et al. Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. J Biol Chem 1997; 272:18033–18037.

    Article  PubMed  CAS  Google Scholar 

  66. Park HS, Lee JS, Huh SH et al. Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J 2001; 20:446–456.

    Article  PubMed  CAS  Google Scholar 

  67. Volloch V, Gabai VL, Rits S et al. HSP72 can protect cells from heat-induced apoptosis by accelerating the inactivation of stress kinase JNK. Cell Stress Chaperones 2000; 5:139–147.

    Article  PubMed  CAS  Google Scholar 

  68. Yaglom JA, Gabai VL, Meriin AB et al. The function of HSP72 in suppression of c-Jun N-terminal kinase activation can be dissociated from its role in prevention of protein damage. J Biol Chem 1999; 274:20223–20228.

    Article  PubMed  CAS  Google Scholar 

  69. Li GC, Li L, Liu RY et al. Heat shock protein hsp70 protects cells from thermal stress even after deletion of its ATP-binding domain. Proc Natl Acad Sci USA 1992; 89:2036–2040.

    Article  PubMed  CAS  Google Scholar 

  70. Volloch V, Gabai VL, Rits S et al. ATPase activity of the heat shock protein hsp72 is dispensable for its effects on dephosphorylation of stress kinase JNK and on heat-induced apoptosis. FEBS Lett 1999; 461:73–76.

    Article  PubMed  CAS  Google Scholar 

  71. Dorion S, Lambert H, Landry J. Activation of the p38 signaling pathway by heat shock involves the dissociation of glutathione S-transferase Mu from Ask1. J Biol Chem 2002; 277:30792–30797.

    Article  PubMed  CAS  Google Scholar 

  72. Ichijo H, Nishida E, Irie K et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 1997; 275:90–94.

    Article  PubMed  CAS  Google Scholar 

  73. Saitoh M, Nishitoh H, Fujii M et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 1998; 17:2596–2606.

    Article  PubMed  CAS  Google Scholar 

  74. Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 1995; 30:445–600.

    PubMed  CAS  Google Scholar 

  75. Chang Y, Abe A, Shayman JA. Ceramide formation during heat shock: A potential mediator of alpha B-crystallin transcription. Proc Natl Acad Sci USA 1995; 92:12275–12279.

    Article  PubMed  CAS  Google Scholar 

  76. Chung N, Jenkins G, Hannun YA et al. Sphingolipids signal heat stress-induced ubiquitin-dependent proteolysis. J Biol Chem 2000; 275:17229–17232.

    Article  PubMed  CAS  Google Scholar 

  77. Dickson RC, Nagiec EE, Skrzypek M et al. Sphingolipids are potential heat stress signals in Saccharomyces. J Biol Chem 1997; 272:30196–30200.

    Article  PubMed  CAS  Google Scholar 

  78. Chrétien P, Landry J. Enhanced constitutive expression of the 27-kDa heat shock proteins in heat-resistant variants from Chinese hamster cells. J Cell Physiol 1988; 137:157–166.

    Article  PubMed  Google Scholar 

  79. Landry J, Chretien P, Laszlo A et al. Phosphorylation of HSP27 during development and decay of thermotolerance in Chinese hamster cells. J Cell Physiol 1991; 147:93–101.

    Article  PubMed  CAS  Google Scholar 

  80. Huot J, Lambert H, Lavoie JN et al. Characterization of 45-kDa/54-kDa HSP27 kinase, a stress-sensitive kinase which may activate the phosphorylation-dependent protective function of mammalian 27-kDa heat-shock protein HSP27. Eur J Biochem 1995; 227:416–427.

    Article  PubMed  CAS  Google Scholar 

  81. Lavoie JN, Lambert H, Hickey E et al. Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Mol Cell Biol 1995; 15:505–516.

    PubMed  CAS  Google Scholar 

  82. Lambert H, Charette SJ, Bernier AF et al. HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J Biol Chem 1999; 274:9378–9385.

    Article  PubMed  CAS  Google Scholar 

  83. Deschesnes RG, Huot J, Valerie K et al. Involvement of p38 in apoptosis-associated membrane blebbing and nuclear condensation. Mol Biol Cell 2001; 12:1569–1582.

    PubMed  CAS  Google Scholar 

  84. Brenner B, Koppenhoefer U, Weinstock C et al. Fas-or ceramide-induced apoptosis is mediated by a Rac1-regulated activation of Jun N-terminal kinase/p38 kinases and GADD153. J Biol Chem 1997; 272:22173–22181.

    Article  PubMed  CAS  Google Scholar 

  85. Toyoshima F, Moriguchi T, Nishida E. Fas induces cytoplasmic apoptotic responses and activation of the MKK7-JNK/SAPK and MKK6-p38 pathways independent of CPP32-like proteases. J Cell Biol 1997; 139:1005–1015.

    Article  PubMed  CAS  Google Scholar 

  86. Frasch SC, Nick JA, Fadok VA et al. p38 mitogen-activated protein kinase-dependent and-independent intracellular signal transduction pathways leading to apoptosis in human neutrophils. J Biol Chem 1998; 273:8389–8397.

    Article  PubMed  CAS  Google Scholar 

  87. Desbiens KM, Deschesnes RG, Labrie MM et al. c-Myc potentiates the mitochondrial pathway of apoptosis by acting upstream of apoptosis signal-regulating kinase 1 (Ask1) in the p38 signalling cascade. Biochem J 2003; 372:631–641.

    Article  PubMed  CAS  Google Scholar 

  88. Huot J, Houle F, Rousseau S et al. SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. J Cell Biol 1998; 143:1361–1373.

    Article  PubMed  CAS  Google Scholar 

  89. Guay J, Lambert H, Gingras-Breton G et al. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 1997; 110:357–368.

    PubMed  CAS  Google Scholar 

  90. Dorion S, Berube J, Huot J et al. A short lived protein involved in the heat shock sensing mechanism responsible for stress-activated protein kinase 2 (SAPK2/p38) activation. J Biol Chem 1999; 274:37591–37597.

    Article  PubMed  CAS  Google Scholar 

  91. Vanhaesebroeck B, Alessi DR. The PI3K-PDK1 connection: More than just a road to PKB. Biochem J 2000; 346:561–576.

    Article  PubMed  CAS  Google Scholar 

  92. Shaw M, Cohen P, Alessi DR. The activation of protein kinase B by H2O2 or heat shock is mediated by phosphoinositide 3-kinase and not by mitogen-activated protein kinase-activated protein kinase-2. Biochem J 1998; 336:241–246.

    PubMed  CAS  Google Scholar 

  93. Bijur GN, Jope RS. Opposing actions of phosphatidylinositol 3-kinase and glycogen synthase kinase-3beta in the regulation of HSF-1 activity. J Neurochem 2000; 75:2401–2408.

    Article  PubMed  CAS  Google Scholar 

  94. Bang OS, Ha BG, Park EK et al. Activation of Akt is induced by heat shock and involved in suppression of heat-shock-induced apoptosis of NIH3T3 cells. Biochem Biophys Res Commun 2000; 278:306–311.

    Article  PubMed  CAS  Google Scholar 

  95. Ma N, Jin J, Lu F et al. The role of protein kinase B (PKB) in modulating heat sensitivity in a human breast cancer cell line. Int J Radiat Oncol Biol Phys 2001; 50:1041–1050.

    Article  PubMed  CAS  Google Scholar 

  96. Park HS, Kim MS, Huh SH et al. Akt (protein kinase B) negatively regulates SEK1 by means of protein phosphorylation. J Biol Chem 2002; 277:2573–2578.

    Article  PubMed  CAS  Google Scholar 

  97. Levresse V, Butterfield L, Zentrich E et al. Akt negatively regulates the cJun N-terminal kinase pathway in PC12 cells. J Neurosci Res 2000; 62:799–808.

    Article  PubMed  CAS  Google Scholar 

  98. Kennedy SG, Kandel ES, Cross TK et al. Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol 1999; 19:5800–5810.

    PubMed  CAS  Google Scholar 

  99. Ogawara Y, Kishishita S, Obata T et al. Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem 2002; 277:21843–21850.

    Article  PubMed  CAS  Google Scholar 

  100. Rena G, Guo S, Cichy SC et al. Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem 1999; 274:17179–17183.

    Article  PubMed  CAS  Google Scholar 

  101. Sato S, Fujita N, Tsuruo T. Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci USA 2000; 97:10832–10837.

    Article  PubMed  CAS  Google Scholar 

  102. Fujita N, Sato S, Ishida A et al. Involvement of Hsp90 in signaling and stability of 3-phosphoinositide-dependent kinase-1. J Biol Chem 2002; 277:10346–10353.

    Article  PubMed  CAS  Google Scholar 

  103. Konishi H, Matsuzaki H, Tanaka M et al. Activation of protein kinase B (Akt/RAC-protein kinase) by cellular stress and its association with heat shock protein Hsp27. FEBS Lett 1997; 410:493–498.

    Article  PubMed  CAS  Google Scholar 

  104. Zhang R, Luo D, Miao R et al. Hsp90-Akt phosphorylates ASK1 and inhibits ASK1-mediated apoptosis. Oncogene 2005; 24:3954–3963.

    Article  PubMed  CAS  Google Scholar 

  105. Glass JR, DeWitt RG, Cress AE. Rapid loss of stress fibers in Chinese hamster ovary cells after hyperthermia. Cancer Res 1985; 45:258–262.

    PubMed  CAS  Google Scholar 

  106. Iida K, Iida H, Yahara I. Heat shock induction of intranuclear actin rods in cultured mammalian cells. Exp Cell Res 1986; 165:207–215.

    Article  PubMed  CAS  Google Scholar 

  107. Welch WJ, Suhan JP. Morphological study of the mammalian stress response: Characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment. J Cell Biol 1985; 101:1198–1211.

    Article  PubMed  CAS  Google Scholar 

  108. Patriarca EJ, Maresca B. Acquired thermotolerance following heat shock protein synthesis prevents impairment of mitochondrial ATPase activity at elevated temperatures in Saccharomyces cerevisiae. Exp Cell Res 1990; 190:57–64.

    Article  PubMed  CAS  Google Scholar 

  109. Warters RL, Stone OL. The effects of hyperthermia on DNA replication in HeLa cells. Radiat Res 1983; 93:71–84.

    Article  PubMed  CAS  Google Scholar 

  110. Yost HJ, Petersen RB, Lindquist S. RNA metabolism: Strategies for regulation in the heat shock response. Trends Genet 1990; 6:223–227.

    Article  PubMed  CAS  Google Scholar 

  111. Mosser DD, Caron AW, Bourget L et al. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 1997; 17:5317–5327.

    PubMed  CAS  Google Scholar 

  112. LaFevre-Bernt MA, Ellerby LM. Kennedy’s disease. Phosphorylation of the polyglutamine-expanded form of androgen receptor regulates its cleavage by caspase-3 and enhances cell death. J Biol Chem 2003; 278:34918–34924.

    Article  PubMed  CAS  Google Scholar 

  113. Vigh L, Escriba PV, Sonnleitner A et al. The significance of lipid composition for membrane activity: New concepts and ways of assessing function. Prog Lipid Res 2005; 44:303–344.

    Article  PubMed  CAS  Google Scholar 

  114. Dynlacht JR, Fox MH. The effect of 45 degrees C hyperthermia on the membrane fluidity of cells of several lines. Radiat Res 1992; 130:55–60.

    Article  PubMed  CAS  Google Scholar 

  115. Mejia R, Gomez-Eichelmann MC, Fernandez MS. Membrane fluidity of Escherichia coli during heat-shock. Biochim Biophys Acta 1995; 1239:195–200.

    Article  PubMed  Google Scholar 

  116. Carratu L, Franceschelli S, Pardini CL et al. Membrane lipid perturbation modifies the set point of the temperature of heat shock response in yeast. Proc Natl Acad Sci USA 1996; 93:3870–3875.

    Article  PubMed  CAS  Google Scholar 

  117. Horvath I, Glatz A, Varvasovszki V et al. Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: Identification of hsp17 as a “fluidity gene”. Proc Natl Acad Sci USA 1998; 95:3513–3518.

    Article  PubMed  CAS  Google Scholar 

  118. Balogh G, Horvath I, Nagy E et al. The hyperfluidization of mammalian cell membranes acts as a signal to initiate the heat shock protein response. FEBS J 2005; 272:6077–6086.

    Article  PubMed  CAS  Google Scholar 

  119. Burgering BM, Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 1995; 376:599–602.

    Article  PubMed  CAS  Google Scholar 

  120. Ihara Y, Yasuoka C, Kageyama K et al. Tyrosine phosphorylation of clathrin heavy chain under oxidative stress. Biochem Biophys Res Commun 2002; 297:353–360.

    Article  PubMed  CAS  Google Scholar 

  121. Wilde A, Beattie EC, Lem L et al. EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake. Cell 1999; 96:677–687.

    Article  PubMed  CAS  Google Scholar 

  122. Caterina MJ, Schumacher MA, Tominaga M et al. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997; 389:816–824.

    Article  PubMed  CAS  Google Scholar 

  123. Clapham DE. TRP channels as cellular sensors. Nature 2003; 426:517–524.

    Article  PubMed  CAS  Google Scholar 

  124. Voets T, Droogmans G, Wissenbach U et al. The principle of temperature-dependent gating in cold-and heat-sensitive TRP channels. Nature 2004; 430:748–754.

    Article  PubMed  CAS  Google Scholar 

  125. Li C, Xu Q. Mechanical stress-initiated signal transductions in vascular smooth muscle cells. Cell Signal 2000; 12:435–445.

    Article  PubMed  CAS  Google Scholar 

  126. Sadoshima J, Izumo S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: Potential involvement of an autocrine/paracrine mechanism. EMBO J 1993; 12:1681–1692.

    PubMed  CAS  Google Scholar 

  127. Gray JV, Ogas JP, Kamada Y et al. A role for the Pkc1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator. EMBO J 1997; 16:4924–4937.

    Article  PubMed  CAS  Google Scholar 

  128. Verna J, Lodder A, Lee K et al. A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1997; 94:13804–13809.

    Article  PubMed  CAS  Google Scholar 

  129. Kamada Y, Jung US, Piotrowski J et al. The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev 1995; 9:1559–1571.

    Article  PubMed  CAS  Google Scholar 

  130. Imazu H, Sakurai H. Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock. Eukaryot Cell 2005; 4:1050–1056.

    Article  PubMed  CAS  Google Scholar 

  131. Jenkins GM. The emerging role for sphingolipids in the eukaryotic heat shock response. Cell Mol Life Sci 2003; 60:701–710.

    Article  PubMed  CAS  Google Scholar 

  132. Verheij M, Bose R, Lin XH et al. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 1996; 380:75–79.

    Article  PubMed  CAS  Google Scholar 

  133. Kozawa O, Tanabe K, Ito H et al. Sphingosine 1-phosphate regulates heat shock protein 27 induction by a p38 MAP kinase-dependent mechanism in aortic smooth muscle cells. Exp Cell Res 1999; 250:376–380.

    Article  PubMed  CAS  Google Scholar 

  134. Kaneko H, Igarashi K, Kataoka K et al. Heat shock induces phosphorylation of histone H2AX in mammalian cells. Biochem Biophys Res Commun 2005; 328:1101–1106.

    Article  PubMed  CAS  Google Scholar 

  135. Takahashi A, Matsumoto H, Nagayama K et al. Evidence for the involvement of double-strand breaks in heat-induced cell killing. Cancer Res 2004; 64:8839–8845.

    Article  PubMed  CAS  Google Scholar 

  136. Miyakoda M, Suzuki K, Kodama S et al. Activation of ATM and phosphorylation of p53 by heat shock. Oncogene 2002; 21:1090–1096.

    Article  PubMed  CAS  Google Scholar 

  137. Guan J, Stavridi E, Leeper DB et al. Effects of hyperthermia on p53 protein expression and activity. J Cell Physiol 2002; 190:365–374.

    Article  PubMed  CAS  Google Scholar 

  138. Kampinga HH, Laszlo A. DNA double strand breaks do not play a role in heat-induced cell killing. Cancer Res 2005; 65:10632–10633.

    Article  PubMed  CAS  Google Scholar 

  139. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003; 421:499–506.

    Article  PubMed  CAS  Google Scholar 

  140. Fritz G, Kama B. Late activation of stress kinases (SAPK/JNK) by genotoxins requires the DNA repair proteins DNA-PKcs and CSB. Mol Biol Cell 2006; 17:851–861.

    Article  PubMed  CAS  Google Scholar 

  141. Viniegra JG, Martinez N, Modirassari P et al. Full activation of PKB/Akt in response to insulin or ionizing radiation is mediated through ATM. J Biol Chem 2005; 280:4029–4036.

    Article  PubMed  CAS  Google Scholar 

  142. Wang X, McGowan CH, Zhao M et al. Involvement of the MKK6-p38gamma cascade in gamma-radiation-induced cell cycle arrest. Mol Cell Biol 2000; 20:4543–4552.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Landry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Nadeau, S.I., Landry, J. (2007). Mechanisms of Activation and Regulation of the Heat Shock-Sensitive Signaling Pathways. In: Csermely, P., Vígh, L. (eds) Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks. Advances in Experimental Medicine and Biology, vol 594. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39975-1_10

Download citation

Publish with us

Policies and ethics