Skip to main content

Limb Pattern Formation

Upstream and Downstream of Shh Signalling

  • Chapter
Shh and Gli Signalling and Development

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 542 Accesses

Abstract

The vertebrate limb is an attractive model system for studying the interplay of signalling molecules that coordinate growth and patterning during organogenesis. Sonic Hedgehog (Shh) plays a key regulatory role during vertebrate limb development as a mediator of the zone of polarizing activity, which directs antero-posterior patterning and ensures that a thumb develops anteriorly and a little finger at the posterior edge of the hand.

The purpose of this chapter is to discuss the different aspects of Shh signalling function during vertebrate limb development. In particular, we will describe the sequence of events leading to the induction and formation of the Shh expression domain at the posterior limb bud margin. These events are critical to define the role of Shh in subsequent patterning of the distal limb bud and to establish the initial antero-posterior polarity. We then focus mainly on describing the molecular mechanisms supporting the potential role of Shh as a morphogen during digit patterning. Furthermore, we review the role of Gli family members in mediating Shh signal transduction with special emphasis on Shh-Gli3 interactions. Finally we will report on recent work that challenges the relevance of Shh as a spatial morphogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Panman L, Zeller R. Patterning the limb before and after SHH signalling. J Anat 2003; 202(1):3–12.

    Article  PubMed  CAS  Google Scholar 

  2. Saunders JWJ. The proximo-distal sequence of origin of limb parts of the chick wing and the role of the ectoderm. J Exp Zoology 1948; (108):363–404.

    Article  Google Scholar 

  3. Summerbell D. A quantitative analysis of the effect of excision of the AER from the chick limb-bud. J Embryol Exp Morphol 1974; 32(3):651–660.

    PubMed  CAS  Google Scholar 

  4. Niswander L, Tickle C, Vogel A et al. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell 1993; 75(3):579–587.

    Article  PubMed  CAS  Google Scholar 

  5. Vogel A, Tickle C. FGF-4 maintains polarizing activity of posterior limb bud cells in vivo and in vitro. Development 1993; 119(1):199–206.

    PubMed  CAS  Google Scholar 

  6. Spemann HaMH. Induction of embryonic primordia by implantation of organizers from a different species. Int J Dev Biol 2001; (reprinted)45:13–38.

    PubMed  CAS  Google Scholar 

  7. Wolpert L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 1969; 25:1–47.

    Article  PubMed  CAS  Google Scholar 

  8. Riddle RD, Johnson RL, Laufer E et al. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 1993; 75:1401–1416.

    Article  PubMed  CAS  Google Scholar 

  9. Kraus P, Fraidenraich D, Loomis CA. Some distal limb structures develop in mice lacking Sonic hedgehog signaling. Mech Dev 2001; 100(1):45–58.

    Article  PubMed  CAS  Google Scholar 

  10. Chiang C, Litingtung Y, Lee E et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 1996; 383:407–413.

    Article  PubMed  CAS  Google Scholar 

  11. Chiang C, Litingtung Y, Harris MP et al. Manifestation of the limb prepattern: Limb development in the absence of sonic hedgehog function. Dev Biol 2001; 236:421–435.

    Article  PubMed  CAS  Google Scholar 

  12. Martin GR. The roles of FGFs in the early development of vertebrate limbs. Genes Dev 1998; 12:1571–1586.

    Article  PubMed  CAS  Google Scholar 

  13. Tickle C, Munsterberg A. Vertebrate limb development–the early stages in chick and mouse. Curr Opin Genet Dev 2001; 11(4):476–481.

    Article  PubMed  CAS  Google Scholar 

  14. Kawakami Y, Capdevila J, Buscher D et al. WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell 2001; 104(6):891–900.

    Article  PubMed  CAS  Google Scholar 

  15. Kengaku M, Capdevila J, Rodriguez-Esteban C et al. Distinct WNT pathways regulating AER formation and dorsoventral polarity in the chick limb bud. Science 1998; 280(5367):1274–1277.

    Article  PubMed  CAS  Google Scholar 

  16. Barrow JR, Thomas KR, Boussadia-Zahui O et al. Ectodermal Wnt3/beta-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. Genes Dev 2003; 17(3):394–409.

    Article  PubMed  CAS  Google Scholar 

  17. Isaac A, Cohn MJ, Ashby P et al. FGF and genes encoding transcription factors in early limb specification. Mech Dev 2000; 93:41–48.

    Article  PubMed  CAS  Google Scholar 

  18. Lewandoski M, Sun X, Martin GR. Fgf8 signalling from the AER is essential for normal limb development. Nat Genet 2000; 26(4):460–463.

    Article  PubMed  CAS  Google Scholar 

  19. Moon AM, Capecchi MR. FgfB is required for outgrowth and patterning of the limbs. Nat Genet 2000; 26(4):455–459.

    Article  PubMed  CAS  Google Scholar 

  20. Charite J, de Graaff W, Shen S et al. Ectopic expression of Hoxb-8 causes duplication of the ZPA in the forelimb and homeotic transformation of axial structures. Cell 1994; 78(4):589–601.

    Article  PubMed  CAS  Google Scholar 

  21. van den Akker E, Reijnen M, Korving J et al. Targeted inactivation of Hoxb8 affects survival of a spinal ganglion and causes aberrant limb reflexes. Mech Dev 1999; 89(1–2):103–114.

    PubMed  Google Scholar 

  22. van den Akker E, Fromental-Ramain C, de Graaff W et al. Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes. Development 2001; 128(10):1911–1921.

    PubMed  Google Scholar 

  23. Zakany J, Kmita M, Duboule D. A dual role for Hox genes in limb anterior-posterior asymmetry. Science 2004; 304(5677):1669–1672.

    Article  PubMed  CAS  Google Scholar 

  24. Tickle C, Alberts BM, Wolpert L et al. Local application of retinoic acid in the limb bud mimics the action of the polarizing region. Nature 1982; 296:564–565.

    Article  PubMed  CAS  Google Scholar 

  25. Helms JA, Kim CH, Eichele G et al. Retinoic acid signaling is required during early chick limb development. Development 1996; 122(5):1385–1394.

    PubMed  CAS  Google Scholar 

  26. Stratford T, Horton C, Maden M. Retinoic acid is required for the initiation of outgrowth in the chick limb bud. Curr Biol 1996; 6(9):1124–1133.

    Article  PubMed  CAS  Google Scholar 

  27. Niederreither K, Vermot J, Schuhbaur B et al. Embryonic retinoic acid synthesis is required for forelimb growth and anteroposterior patterning in the mouse. Development 2002; 129(15):3563–3574.

    PubMed  CAS  Google Scholar 

  28. Mic FA, Sirbu IO, Duester G. Retinoic acid synthesis controlled by Raldh2 is required early for limb bud initiation and then later as a proximodistal signal during apical ectodermal ridge formation. J Biol Chem 2004; 279(25):26698–26706.

    Article  PubMed  CAS  Google Scholar 

  29. Fernandez-Teran M, Piedra ME, Kathiriya IS et al. Role of dHAND in the anterior-posterior polarization of the limb bud: Implications for the Sonic hedgehog pathway. Development 2000; 127:2133–2142.

    PubMed  CAS  Google Scholar 

  30. Charite J, McFadden DG, Olson EN. The bHLH transcription factor dHAND controls Sonic hedgehog expression and establishment of the zone of polarizing activity during limb development. Development 2000; 127(11):2461–2470.

    PubMed  CAS  Google Scholar 

  31. Yelon D, Baruch T, Halpern ME et al. The bHLH transcription factor Hand2 plays parallel roles in zebrafish heart and pectoral fin development. Development 2000; 127:2573–2582.

    PubMed  CAS  Google Scholar 

  32. te Welscher P, Fernandez-Teran M, Ros MA et al. Mutual genetic antagonism involving GLI3 and dHAND prepatterns the vertebrate limb bud mesenchyme prior to SHH signaling. Genes Dev 2002; 16(4):421–426.

    Article  Google Scholar 

  33. Zuniga A, Zeller R. Gli3 (Xt) and formin (ld) participate in the positioning of the polarising region and control of posterior limb-bud identity. Development 1999; 126(1):13–21.

    PubMed  CAS  Google Scholar 

  34. Zuniga A, Michos O, Spitz F et al. Mouse limb deformity mutations disrupt a global control region within the large regulatory landscape required for Gremlin expression. Genes Dev 2004; 18(13):1553–1564.

    Article  PubMed  CAS  Google Scholar 

  35. Srivastava D, Thomas T, Lin Q et al. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor dHAND. Nat Genet 1997; 16:154–160.

    Article  PubMed  CAS  Google Scholar 

  36. Schimmang T, Lemaistre M, Vortkamp A et al. Expression of the zinc finger gene Gli3 is affected in the morphogenetic mouse mutant extra-toes (Xt). Development 1992; 116:799–804.

    PubMed  CAS  Google Scholar 

  37. Hui C, Joyner A. A mouse model of greig cephalopolysyndactyly syndrome: The extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nat Genet 1993; 3(3):241–246.

    Article  PubMed  CAS  Google Scholar 

  38. Theil T, Kaesler S, Grotewold L et al. Gli genes and limb development. Cell Tissue Res 1999; 296(1):75–83.

    Article  PubMed  CAS  Google Scholar 

  39. te Welscher P, Zuniga A, Kuijper S et al. Progression of vertebrate limb development through shh-mediated counteraction of GLI3. Science 2002; 298:827–830.

    Article  Google Scholar 

  40. Litingtung Y, Dahn RD, Li Y et al. Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 2002; 418(6901):979–983.

    Article  PubMed  CAS  Google Scholar 

  41. Cohen Jr MM. The hedgehog signaling network. Am J Med Genet A 2003; 123(1):5–28.

    Article  Google Scholar 

  42. Lee JJ, Ekker SC, von Kessler DP et al. Autoproteolysis in hedgehog protein biogenesis. Science 1994; 266(5190):1528–1537.

    Article  PubMed  CAS  Google Scholar 

  43. Lewis PM, Dunn MP, McMahon JA et al. Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptcl. Cell 2001; 105(5):599–612.

    Article  PubMed  CAS  Google Scholar 

  44. Chen MH, Li YJ, Kawakami T et al. Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates. Genes Dev 2004; 18(6):641–659.

    Article  PubMed  CAS  Google Scholar 

  45. Burke R, Nellen D, Bellotto M et al. Dispatched, a novel sterol sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. Cell 1999; 99:803–815.

    Article  PubMed  CAS  Google Scholar 

  46. Ma Y, Erkner A, Gong R et al. Hedgehog-mediated patterning of the mammalian embryo requires transporter-like function of dispatched. Cell 2002; 111(1):63–75.

    Article  PubMed  CAS  Google Scholar 

  47. Caspary T, Garcia-Garcia MJ, Huangfu D et al. Mouse dispatched homolog1 is required for long-range, but not juxtacrine, Hh signaling. Curr Biol 2002; 12(18):1628–1632.

    Article  PubMed  CAS  Google Scholar 

  48. Kawakami T, Kawcak T, Li YJ et al. Mouse dispatched mutants fail to distribute hedgehog proteins and are defective in hedgehog signaling. Development 2002; 129(24):5753–5765.

    Article  PubMed  CAS  Google Scholar 

  49. Zeng X, Goetz JA, Suber LM et al. A freely diffusible form of Sonic hedgehog mediates long-range signalling. Nature 2001; 411(6838):716–720.

    Article  PubMed  CAS  Google Scholar 

  50. Lin X. Functions of heparan sulfate proteoglycans in cell signaling during development. Development 2004; 131(24):6009–6021.

    Article  PubMed  CAS  Google Scholar 

  51. Goodrich LV, Milenkovic L, Higgins KM et al. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 1997; 277(5329):1109–1113.

    Article  PubMed  CAS  Google Scholar 

  52. Chuang P-T, McMahon AP. Vertebrate hedgehog signalling modulated by induction of a hedgehog-binding protein. Nature 1999; 987:617–621.

    Article  Google Scholar 

  53. Ingham PW, McMahon AP. Hedgehog signaling in animal development: Paradigms and principles. Genes Dev 2001; 15(23):3059–3087.

    Article  PubMed  CAS  Google Scholar 

  54. Lum L, Beachy PA. The Hedgehog response network: Sensors, switches, and routers. Science 2004; 304(5678):1755–1759.

    Article  PubMed  CAS  Google Scholar 

  55. Buscher D, Ruther U. Expression profile of Gli family members and Shh in normal and mutant mouse limb development. Dev Dyn 1998; 211(1):88–96.

    Article  PubMed  CAS  Google Scholar 

  56. Lee J, Platt KA, Censullo P et al. Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 1997; 124(13):2537–2552.

    PubMed  CAS  Google Scholar 

  57. Bai CB, Stephen D, Joyner AL. All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Dev Cell 2004; 6(1):103–115.

    Article  PubMed  CAS  Google Scholar 

  58. Johnson DR. Extra-toes: A new mutant gene causing multiple abnormalities in the mouse. J Embryol Exp Morph 1967; 17(3):543–581.

    PubMed  CAS  Google Scholar 

  59. Vortkamp A, Gessler M, Le Paslier D et al. Isolation of a yeast artificial chromosome contig spanning the Greig cephalopolysyndactyly syndrome (GCPS) gene region. Genomics 1994; 22(3):563–568.

    Article  PubMed  CAS  Google Scholar 

  60. Park HL, Bai C, Platt KA et al. Mouse Glil mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 2000; 127:1593–1605.

    PubMed  CAS  Google Scholar 

  61. Ahn S, Joyner AL. Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell 2004; 118(4):505–516.

    Article  PubMed  CAS  Google Scholar 

  62. Wang B, Fallon JF, Beachy PA. Hedgehog-Regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 2000; 100:423–434.

    Article  PubMed  CAS  Google Scholar 

  63. Chen Y, Knezevic V, Ervin V et al. Direct interaction with Hoxd proteins reverses Gli3-repressor function to promote digit formation downstream of Shh. Development 2004; 131(10):2339–2347.

    Article  PubMed  CAS  Google Scholar 

  64. Niswander L, Tickle C, Vogel A et al. Function of FGF-4 in limb development. Mol Reprod Dev 1994; 39(1):83–88.

    Article  PubMed  CAS  Google Scholar 

  65. Laufer E, Nelson CE, Johnson RL et al. Sonic hedgehog and Fgf-4 act through a signalling cascade and feedback loop to integrate growth and patterning of the development limb bud. Cell 1994; 79:993–1003.

    Article  PubMed  CAS  Google Scholar 

  66. Zuniga A, Haramis AP, McMahon AP et al. Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds. Nature 1999; 401(6753):598–602.

    Article  PubMed  CAS  Google Scholar 

  67. Merino R, Rodriguez-Leon J, Macias D et al. The BMP antagonist Gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb. Development 1999; 126(23):5515–5522.

    PubMed  CAS  Google Scholar 

  68. Capdevila J, Tsukui T, Rodriquez Esteban C et al. Control of vertebrate limb outgrowth by the proximal factor Meis2 and distal antagonism of BMPs by Gremlin. Mol Cell 1999; 4(5):839–849.

    Article  PubMed  CAS  Google Scholar 

  69. Khokha MK, Hsu D, Brunet LJ et al. Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nat Genet 2003; 34(3):303–307.

    Article  PubMed  CAS  Google Scholar 

  70. Michos O, Panman L, Vintersten K et al. Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 2004; 131(14):3401–3410.

    Article  PubMed  CAS  Google Scholar 

  71. Harfe BD, Scherz PJ, Nissim S et al. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 2004; 118(4):517–528.

    Article  PubMed  CAS  Google Scholar 

  72. Scherz PJ, Harfe BD, McMahon AP et al. The limb bud Shh-Fgf feedback loop is terminated by expansion of former ZPA cells. Science 2004; 305(5682):396–399.

    Article  PubMed  CAS  Google Scholar 

  73. Martin P. Tissue patterning in the developing mouse limb. Int J Dev Biol 1990; 34:323–336.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Zuniga, A., Galli, A. (2006). Limb Pattern Formation. In: Shh and Gli Signalling and Development. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39957-7_8

Download citation

Publish with us

Policies and ethics