Skip to main content

Endocrine Diseases

Graves’ and Hashimoto’s Diseases

  • Chapter
Immunogenetics of Autoimmune Disease

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 673 Accesses

Abstract

The autoimmune thyroid diseases (AITD) are complex diseases which are caused by an interaction between susceptibility genes and environmental triggers. Genetic susceptibility in combination with external factors (e.g., dietary iodine) are believed to initiate the autoimmune response to thyroid antigens. Abundant epidemiological data, including family and twin studies, point to a strong genetic influence on the development of AITD. Various techniques have been employed to identify the genes contributing to the etiology of AITD, including candidate gene analysis and whole genome screening. These studies have enabled the identification of several loci (genetic regions) that are linked with AITD, and in some of these loci putative AITD susceptibility genes have been identified. Some of these genes/loci are unique to Graves’ disease (GD) and Hashimotos thyroiditis (HT) and some are common to both diseases, indicating that there is a shared genetic susceptibility to GD and HT. The putative GD and HT susceptibility genes include both immune modifying genes (e.g., HLA, CTLA-4) and thyroid specific genes (e.g., TSHR, Tg). Most likely these loci interact and their interactions may influence disease phenotype and severity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davies TF. Graves’ Diseases: Pathogenesis. In: Braverman LE, Utiger RD, eds. Werner and Ingbar’s The Thyroid: A Fundamental and Clinical Text. Philadelphia: Lippincott Williams and Wilkens, 2000:518–530.

    Google Scholar 

  2. Weetman AP. Chronic autoimmune thyroiditis. In: Braverman LE, Utiger RD, eds. Werner and Ingbar’s the thyroid. Philadelphia: Lippincott-Raven, 1996:738–748.

    Google Scholar 

  3. Brix TH, Kyvik KO, Hegedus L. What is the evidence of genetic factors in the etiology of Graves’ disease? A brief review. Thyroid 1998;8:727–734.

    PubMed  CAS  Google Scholar 

  4. Tomer Y, Barbesino G, Greenberg DA et al. The immunogenetics of autoimmune diabetes and autoimmune thyroid disease. Trends Endocrinol Metab 1997;8:63–70.

    CAS  Google Scholar 

  5. Bartels ED. Twin examinations: Heredity in Graves’ disease. Copenhagen: Munksgaad, 1941:32–36.

    Google Scholar 

  6. Martin L. The heredity and familial aspects of exophathalmic goitre and nodular goitre. Q J Med 1945;14:207–219.

    Google Scholar 

  7. Hall R, Stanbury JB. Familial studies of autoimmune thyroiditis. Clin Exp Immunol 1967;2:719–725.

    PubMed  Google Scholar 

  8. Villanueva RB, Inzerillo AM, Tomer Y et al. Limited genetic susceptibility to severe graves’ oph-thalmopathy: No role for ctla-4 and evidence for an environmental etiology. Thyroid 2000;10:791–798.

    PubMed  CAS  Google Scholar 

  9. Risch N. Linkage strategies for genetically complex traits. II. The power of affected relative pairs. Am J Hum Genet 1990;46:229–241.

    PubMed  CAS  Google Scholar 

  10. Vyse TJ, Todd JA. Genetic analysis of autoimmune disease. Cell 1996;85:311–318.

    PubMed  CAS  Google Scholar 

  11. Brix TH, Christensen K, Holm NV et al. A population-based study of Graves’ diseases in Danish twins. Clin Endocrinol 1998;48:397–400.

    CAS  Google Scholar 

  12. Brix TH, Kyvik KO, Christensen K et al. Evidence for a major role of heredity in Graves’ disease: A population-based study of two Danish twin cohorts. J Clin Endocrinol Metab 2001;86:930–934.

    PubMed  CAS  Google Scholar 

  13. Ringold DA, Nicoloff JT, Kesler M et al. Further evidence for a strong genetic influence on the development of autoimmune thyroid disease: The California twin study. Thyroid 2002;12:647–653.

    PubMed  Google Scholar 

  14. Brix TH, Kyvik KO, Hegedus L. A population-based study of chronic autoimmune hypothyroid-ism in Danish twins. J Clin Endocrinol Metab 2000;85:536–539.

    PubMed  CAS  Google Scholar 

  15. Phillips DI, Osmond C, Baird J et al. Is birthweight associated with thyroid autoimmunity? A study in twins. Thyroid 2002;12:377–380.

    PubMed  Google Scholar 

  16. Todd JA, Acha-Orbea H, Bell JI et al. A molecular basis for MHC class II-associated autoimmunity. Science 1988;240:1003–1009.

    PubMed  CAS  Google Scholar 

  17. Bech K, Lumholtz B, Nerup J et al. HLA antigens in Graves’ disease. Acta Endocrinol 1977;86:510–516.

    PubMed  CAS  Google Scholar 

  18. Farid NR, Stone E, Johnson G. Graves’ disease and HLA: Clinical and epidemiologic associations. Clin Endocrinol (Oxf) 1980;13:535–544.

    CAS  Google Scholar 

  19. Farid NR. Graves’ disease. In: Farid NR, ed. HLA in Endocrine and Metabolic Disorders. Academic Press, 1981:85–143.

    Google Scholar 

  20. Farid NR, Sampson L, Noel EP et al. A study of human D locus related antigens in Graves’ disease. J Clin Invest 1979;63:108–113.

    PubMed  CAS  Google Scholar 

  21. Mangklabruks A, Cox N, DeGroot LJ. Genetic factors in autoimmune thyroid disease analyzed by restriction fragment length polymorphisms of candidate genes. J Clin Endocrinol Metab 1991;73:236–244.

    PubMed  CAS  Google Scholar 

  22. Volpe R. Immunology of human thyroid disease. In: Volpe R, ed. Autoimmunity in endocrine disease. Boca Raton: CRC Press, 1990:73.

    Google Scholar 

  23. Heward JM, Allahabadia A, Daykin J et al. Linkage disequilibrium between the human leukocyte antigen class II region of the major histocompatibility complex and Graves’ disease: Replication using a population case control and family-based study. J Clin Endocrinol Metab 1998;83:3394–3397.

    PubMed  CAS  Google Scholar 

  24. Barlow ABT, Wheatcroft N, Watson P et al. Association of HLA-DQAl*0501 with Graves’ disease in English Caucasian men and women. Clin Endocrinol 1996;44:73–77.

    CAS  Google Scholar 

  25. Yanagawa T, Mangklabruks A, Chang YB et al. Human histocompatibility leukocyte antigen-DQAl*0501 allele associated with genetic susceptibility to Graves’ disease in a Caucasian population. J Clin Endocrinol Metab 1993;76:1569–1574.

    PubMed  CAS  Google Scholar 

  26. Marga M, Denisova A, Sochnev A et al. Two HLA DRB 1 alleles confer independent genetic susceptibility to Graves disease: Relevance of cross-population studies. Am J Med Genet 2001;102:188–191.

    PubMed  CAS  Google Scholar 

  27. Zamani M, Spaepen M, Bex M et al. Primary role of the HLA class II DRB 1*0301 allele in Graves disease. Am J Med Genet 2000;95:432–437.

    PubMed  CAS  Google Scholar 

  28. Villanueva R, Greenberg DA, Davies TF et al. Sibling recurrence risk in autoimmune thyroid disease. Thyroid 2003;13:761–764.

    PubMed  CAS  Google Scholar 

  29. Ban Y, Davies TF, Greenberg DA et al. Potential role of HLA-DR-74 arginine in the genetic susceptibility to Graves’ disease. San Francisco, CA: The 84th Annual Meeting of the Endocrine Society, 2002.

    Google Scholar 

  30. Segni M, Pani MA, Pasquino AM et al. Familial clustering of juvenile thyroid autoimmunity: Higher risk is conferred by human leukocyte antigen DR3-DQ2 and thyroid peroxidase antibody status in fathers. J Clin Endocrinol Metab 2002;87:3779–3782.

    PubMed  CAS  Google Scholar 

  31. Schleusener H, Schwander J, Fischer C et al. Prospective multicentre study on the prediction of relapse after antithyroid drug treatment in patients with Graves’ disease. Acta Endocrinol (Copenh) 1989;120:689–701.

    PubMed  CAS  Google Scholar 

  32. Dahlberg PA, Holmlund G, Karlsson FA et al. HLA-A,-B,-C and-DR antigens in patients with Graves’ disease and their correlation with signs and clinical course. Acta Endocrinol (Copenh) 1981;97:42–47.

    PubMed  CAS  Google Scholar 

  33. McKenna R, Kearns M, Sugrue D et al. HLA and hyperthyroidism in Ireland. Tissue Antigens 1982;19:97–99.

    PubMed  CAS  Google Scholar 

  34. Allannic H, Fauchet R, Lorcy Y et al. A prospective study of the relationship between relapse of hyperthyroid Graves’ disease after antithyroid drugs and HLA haplotype. J Clin Endocrinol Metab 1983;57:719–722.

    PubMed  CAS  Google Scholar 

  35. Kendall-Taylor P, Stephenson A, Stratton A et al. Differentiation of autoimmune ophthalmopathy from Graves’ hyperthyroidism by analysis of genetic markers. Clin Endocrinol (Oxf) 1988;28:601–610.

    CAS  Google Scholar 

  36. Rapoport B, Alsabeh R, Aftergood D et al. Elephantiasic pretibial myxedema: Insight into and a hypothesis regarding the pathogenesis of the extrathyroidal manifestations of Graves’ disease. Thyroid 2000;10:685–692.

    PubMed  CAS  Google Scholar 

  37. Irvine WJ, Gray RS, Morris PJ et al. HLA in primary atrophic hypothyroidism and Hashimoto goitre. J Clin Lab Immunol 1978;3:193–195.

    Google Scholar 

  38. Farid NR, Sampson L, Moens H et al. The association of goitrous autoimmune thyroiditis with HLA-DR5. Tissue Antigens 1981;17:265–268.

    PubMed  CAS  Google Scholar 

  39. Moens H, Farid NR, Sampson L et al. Hashimoto’s thyroiditis is associated with HLA-DRw3. N Engl J Med 1978;299:133–134.

    PubMed  CAS  Google Scholar 

  40. Tandon N, Zhang L, Weetman AP. HLA associations with Hashimoto’s thyroiditis. Clin Endocrinol (Oxf) 1991;34:383–386.

    CAS  Google Scholar 

  41. Ban Y, Davies TF, Greenberg DA et al. The influence of human leucocyte antigen (HLA) genes on autoimmune thyroid disease (AITD): Results of studies in HLA-DR3 positive AITD families. Clin Endocrinol (Oxf) 2002;57:81–88.

    CAS  Google Scholar 

  42. Kong YC, Lomo LC, Motte RW et al. HLA-DRB1 polymorphism determines susceptibility to autoimmune thyroiditis in transgenic mice: Definitive association with HLA-DRB 1*0301 (DR3) gene. J Exp Med 1996;184:1167–1172.

    PubMed  CAS  Google Scholar 

  43. Wu Z, Stephens HAF, Sachs JA et al. Molecular analysis of HLA-DQ. and-DP genes in caucasoid patients with Hashimoto’s thyroiditis. Tissue Antigens 1994;43:116–119.

    PubMed  CAS  Google Scholar 

  44. Badenhoop K, Schwartz G, Walfish PG et al. Susceptibility to thyroid autoimmune disease: Molecular analysis of HLA-D region genes identifies new markers for goitrous Hashimoto’s thyroiditis. J Clin Endocrinol Metab 1990;71:1131–1137.

    PubMed  CAS  Google Scholar 

  45. Bode HH, Dorf ME, Forbes AP. Familial lymphocytic thyroiditis: Analysis of linkage with histo-compatibility and blood group. J Clin Endocrinol Metab 1973;37:692–697.

    PubMed  CAS  Google Scholar 

  46. Roman SH, Greenberg DA, Rubinstein P et al. Genetics of autoimmune thyroid disease: Lack of evidence for linkage to HLA within families. J Clin Endocrinol Metab 1992;74:496–503.

    PubMed  CAS  Google Scholar 

  47. Barbesino G, Tomer Y, Concepcion ES et al. Linkage analysis of candidate genes in autoimmune thyroid disease. I. Selected immunoregulatory genes. J Clin Endocrinol Metab 1998;83:1580–1584.

    PubMed  CAS  Google Scholar 

  48. Vaidya B, Imrie H, Perros P et al. The cytotoxic T lymphocyte antigen-4 is a major Graves’ disease locus. Hum Mol Genet 1999;8:1195–1199.

    PubMed  CAS  Google Scholar 

  49. Shields DC, Ratanachaiyavong S, McGregor AM et al. Combined segregation and linkage analysis of Graves’ disease with a thyroid autoantibody diathesis. Am J Hum Genet 1994;55:540–554.

    PubMed  CAS  Google Scholar 

  50. Reiser H, Stadecker MJ. Costimulatory B7 molecules in the pathogenesis of infectious and autoimmune diseases. N Engl J Med 1996;335:1369–1377.

    PubMed  CAS  Google Scholar 

  51. Hutloff A, Dittrich AM, Beier KC et al. ICOS is an inducible T-cell costimulator structurally and functionally related to CD28. Nature 1999;397:263–266.

    PubMed  CAS  Google Scholar 

  52. Coyle AJ, Lehar S, Lloyd C et al. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 2000;13:95–105.

    PubMed  CAS  Google Scholar 

  53. Yanagawa T, Hidaka Y, Guimaraes V et al. CTLA-4 gene polymorphism associated with Graves’ disease in a Caucasian population. J Clin Endocrinol Metab 1995;80:41–45.

    PubMed  CAS  Google Scholar 

  54. Nistico L, Buzzetti R, Pritchard LE et al. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. The Belgian Diabetes Registry. Hum Mol Genet 1996;5:1075–1080.

    PubMed  CAS  Google Scholar 

  55. Donner H, Rau H, Walfish PG et al. CTLA4 alanine-17 confers genetic susceptibility to Graves’ disease and to type 1 diabetes mellitus. J Clin Endocrinol Metab 1997;82:143–146.

    PubMed  CAS  Google Scholar 

  56. Kotsa K, Watson PF, Weetman AP. A CTLA-4 gene polymorphism is associated with both Graves’ disease and autoimmune hypothyroidism. Clin Endocrinol 1997;46:551–554.

    CAS  Google Scholar 

  57. Kouki T, Gardine CA, Yanagawa T et al. Relation of three polymorphisms of the CTLA-4 gene in patients with Graves’ disease. J Endocrinol Invest 2002;25:208–213.

    PubMed  CAS  Google Scholar 

  58. Nithiyananthan R, Heward JM, Allahabadia A et al. Polymorphism of the CTLA-4 gene is associated with autoimmune hypothyroidism in the United Kingdom. Thyroid 2002;12:3–6.

    PubMed  CAS  Google Scholar 

  59. Braun J, Donner H, Siegmund T et al. CTLA-4 promoter variants in patients with Graves’ disease and Hashimoto’s thyroiditis. Tissue Antigens 1998;51:563–566.

    PubMed  CAS  Google Scholar 

  60. Yanagawa T, Taniyama M, Enomoto S et al. CTLA4 gene polymorphism confers susceptibility to Graves’ disease in Japanese. Thyroid 1997;7:843–846.

    PubMed  CAS  Google Scholar 

  61. Heward JM, Allahabadia A, Armitage M et al. The development of Graves’ disease and the CTLA-4 gene on chromosome 2q33. J Clin Endocrinol Metab 1999;84:2398–2401.

    PubMed  CAS  Google Scholar 

  62. Heward JM, Allahabadia A, Carr-Smith J et al. No evidence for allelic association of human CTLA-4 promoter polymorphism with autoimmune thyroid disease in either population-based case-control or family-based studies. Clin Endocrinol 1998;49:331–334.

    CAS  Google Scholar 

  63. Donner H, Braun J, Seidl C et al. Codon 17 polymorphism of the cytotoxic T lymphocyte antigen 4 gene in Hashimoto’s thyroiditis and Addison’s disease. J Clin Endocrinol Metab 1997;82:4130–4132.

    PubMed  CAS  Google Scholar 

  64. Petrone A, Giorgi G, Mesturino CA et al. Association of DRB1*O4-DQB1*0301 haplotype and lack of association of two polymorphic sites at CTLA-4 gene with Hashimoto’s thyroiditis in an Italian population. Thyroid 2001;11:171–175.

    PubMed  CAS  Google Scholar 

  65. Tomer Y. Unraveling the genetic susceptibility to autoimmune thyroid diseases: CTLA-4 takes the stage. Thyroid 2001;11:167–169.

    PubMed  CAS  Google Scholar 

  66. Marron MP, Raffel LJ, Garchon HJ et al. Insulin-dependent diabetes mellitus (IDDM) is assocaited with CTLA4 polymorphisms in multiple ethnic groups. Hum Mol Genet 1997;6:1275–1282.

    PubMed  CAS  Google Scholar 

  67. Ueda H, Howson JM, Esposito L et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003;423:506–511.

    PubMed  CAS  Google Scholar 

  68. Vaidya B, Imrie H, Geatch DR et al. Association analysis of the cytotoxic T lymphocyte antigen-4 (CTLA-4) and autoimmune regulator-1 (AIRE1) genes in sporadic autoimmune Addison’s disease. J Clin Endocrinol Metab 2000;85:688–691.

    PubMed  CAS  Google Scholar 

  69. Huang D, Liu L, Noren K et al. Genetic association of Ctla-4 to myasthenia gravis with thymoma. J Neuroimmunol 1998;88:192–198.

    PubMed  CAS  Google Scholar 

  70. Tomer Y, Greenberg DA, Barbesino G et al. CTLA-4 and not CD28 is a susceptibility gene for thyroid autoantibody production. J Clin Endocrinol Metab 2001;86:1687–1693.

    PubMed  CAS  Google Scholar 

  71. Zaletel K, Krhin B, Gaberscek S et al. The influence of the exon 1 polymorphism of the cytotoxic T lymphocyte antigen 4 gene on thyroid antibody production in patients with newly diagnosed graves’ disease. Thyroid 2002;12:373–376.

    PubMed  CAS  Google Scholar 

  72. Vanderpump MPJ, Tunbridge WMG, French JM et al. The incidence of thyroid disorders in the community: A twenty-year follow-up of the Whickham survey. Clin Endocrinol (Oxf) 1995;43:55–68.

    CAS  Google Scholar 

  73. Park YJ, Chung HK, Park DJ et al. Polymorphism in the promoter and exon 1 of the cytotoxic T lymphocyte antigen-4 gene associated with autoimmune thyroid disease in Koreans. Thyroid 2000;10:453–459.

    PubMed  CAS  Google Scholar 

  74. Yung E, Cheng PS, Fok TF et al. CTLA-4 gene A-G polymorphism and childhood Graves’ disease. Clin Endocrinol (Oxf) 2002;56:649–653.

    CAS  Google Scholar 

  75. Allahabadia A, Heward JM, Nithiyananthan R et al. MHC class II region, CTLA4 gene, and ophthalmopathy in patients with Graves’ disease. Lancet 2001;358:984–985.

    PubMed  CAS  Google Scholar 

  76. Vaidya B, Imrie H, Perros P et al. Cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphism confers susceptibility to thyroid associated orbitopathy [letter]. Lancet 1999;354:743–744.

    PubMed  CAS  Google Scholar 

  77. Marron MP, Zeidler A, Raffel LJ et al. Genetic and physical mapping of a type 1 diabetes susceptibility gene (IDDM 12) to a 100-kb phagemid artificial chromosome clone containing D2S72-CTLA4-D2S105 on chromosome 2q33. Diabetes 2000;49:492–499.

    PubMed  CAS  Google Scholar 

  78. Wood JP, Pani MA, Bieda K et al. A recently described polymorphism in the CD28 gene on chromosome 2q33 is not associated with susceptibility to type 1 diabetes. Eur J Immunogenet 2002;29:347–349.

    PubMed  CAS  Google Scholar 

  79. Tomer Y, Barbesino G, Greenberg DA et al. A new Graves disease-susceptibility locus maps to chromosome 20q11.2. Am J Hum Genet 1998;63:1749–1756.

    PubMed  CAS  Google Scholar 

  80. Pearce SH, Vaidya B, Imrie H et al. Further evidence for a susceptibility locus on chromosome 20q13.11 in families with dominant transmission of Graves disease [letter]. Am J Hum Genet 1999; 65:1462–1465.

    PubMed  CAS  Google Scholar 

  81. Durie FH, Foy TM, Masters SR et al. The role of CD40 in the regulation of humoral and cell-mediated immunity. Immunol Today 1994; 15:406–411.

    PubMed  CAS  Google Scholar 

  82. Banchereau J, Bazan F, Blanchard D et al. The CD40 antigen and its ligand. Annu Rev Immunol 1994; 12:881–922.

    PubMed  CAS  Google Scholar 

  83. Foy TM, Aruffo A, Bajorath J et al. Immune regulation by CD40 and its ligand GP39. Annu Rev Immunol 1996; 14:591–617.

    PubMed  CAS  Google Scholar 

  84. Carayanniotis G, Masters SR, Noelle RJ. Suppression of murine thyroiditis via blockade of the CD40-CD40L interaction. Immunology 1997; 90:421–426.

    PubMed  CAS  Google Scholar 

  85. Tomer Y, Concepcion E, Greenberg DA. A C/T single nucleotide polymorphism in the region of the CD40 gene is associated with Graves’ disease. Thyroid 2002; 12:1129–1135.

    PubMed  CAS  Google Scholar 

  86. Demaine A, Welsh KI, Hawe BS et al. Polymorphism of the T cell receptor beta-chain in Graves’ disease. J Clin Endocrinol Metab 1987; 65:643–646.

    PubMed  CAS  Google Scholar 

  87. Weetman AP, So AK, Roe C et al. T-cell receptor alpha chain V region polymorphism linked to primary autoimmune hypothyroidism but not Graves’ disease. Human Immunology 1987; 20:167–173.

    PubMed  CAS  Google Scholar 

  88. Roman SH, Hubbard M, Rubinstein P. Failure to confirm standard HLA and Gm immunogenetic typing as a predictor of familial autoimmune thyroid disease. Seattle, WA: The 74th Annual Meeting of the Endocrine Society, 1989.

    Google Scholar 

  89. Fakhfakh F, Maalej A, Makni H et al. Analysis of immunoglobulin VH and TCR cbeta polymorphisms in a large family with thyroid autoimmune disorder. Exp Clin Immunogenet 1999;16:185–191.

    PubMed  CAS  Google Scholar 

  90. Blakemore AIF, Watson PF, Weetman AP et al. Association of Graves’ disease with an allele of the interleukin-1 receptor antagonist gene. Journal of Clinical Endocrinology and Metabolism 1995; 80:111–115.

    PubMed  CAS  Google Scholar 

  91. Cuddihy RM, Bahn RS. Lack of an association between alleles of interleukin-1 alpha and interleukin-1 receptor antagonsit genes and Graves’ disease in a north American Caucasian population. J Clin Endocrinol Metab 1996; 81:4476–4478.

    PubMed  CAS  Google Scholar 

  92. Muhlberg T, Kirchberger M, Spitzweg C et al. Lack of association of Graves’ disease with the A2 allele of the interleukin-1 receptor antagonist gene in a white European population. Eur J Endocrinol 1998; 138:686–690.

    PubMed  CAS  Google Scholar 

  93. Heward J, Allahabadia A, Gordon C et al. The interleukin-1 receptor antagonist gene shows no allelic association with three autoimmune diseases. Thyroid 1999; 9:627–628.

    PubMed  CAS  Google Scholar 

  94. Siegmund T, Usadel KH, Donner H et al. Interferon-gamma gene microsatellite polymorphisms in patients with Graves’ disease. Thyroid 1998; 8:1013–1017.

    PubMed  CAS  Google Scholar 

  95. Rau H, Nicolay A, Usadel KH et al. Polymorphisms of TAP1 and TAP2 genes in Graves’ disease. Tissue Antigens 1997; 49:16–22.

    PubMed  CAS  Google Scholar 

  96. Heward JM, Nithiyananthan R, Allahabadia A et al. No association of an interleukin 4 gene promoter polymorphism with Graves’ disease in the United Kingdom. J Clin Endocrinol Metab 2001; 86:3861–3863.

    PubMed  CAS  Google Scholar 

  97. Pani MA, Regulla K, Segni M et al. A polymorphism within the vitamin D-binding protein gene is associated with Graves’ disease but not with Hashimoto’s thyroiditis. J Clin Endocrinol Metab 2002; 87:2564–2567.

    PubMed  CAS  Google Scholar 

  98. Tomer Y, Greenberg DA, Concepcion E et al. Thyroglobulin is a thyroid specific gene for the familial autoimmune thyroid diseases. J Clin Endocrinol Metab 2002; 87:404–407.

    PubMed  CAS  Google Scholar 

  99. Sakai K, Shirasawa S, Ishikawa N et al. Identification of susceptibility loci for autoimmune thyroid disease to 5q31–q33 and Hashimoto’s thyroiditis to 8q23–q24 by multipoint affected sib-pair linkage analysis in Japanese. Hum Mol Genet 2001; 10:1379–1386.

    PubMed  CAS  Google Scholar 

  100. Collins JE, Heward JM, Carr-Smith J et al. Association of a rare thyroglobulin gene microsatellite variant with autoimmune thyroid disease. J Clin Endocrinol Metab. 2003; 88:5039–5042.

    PubMed  CAS  Google Scholar 

  101. Tonacchera M, Pinchera A. Thyrotropin receptor polymorphisms and thyroid diseases. J Clin Endocrinol Metab 2000; 85:2637–2639.

    PubMed  CAS  Google Scholar 

  102. Cuddihy RM, Dutton CM, Bahn RS. A polymorphism in the extracellular domain of the thyrotropin receptor is highly associated with autoimmune thyroid disease in females. Thyroid 1995; 5:89–95.

    PubMed  CAS  Google Scholar 

  103. Kotsa KD, Watson PF, Weetman AP. No association between a thyrotropin receptor gene polymorphism and Graves’ disease in the female population. Thyroid 1997; 7:31–33.

    PubMed  CAS  Google Scholar 

  104. Allahabadia A, Heward JM, Mijovic C et al. Lack of association between polymorphism of the thyrotropin receptor gene and Graves’ disease in United Kingdom and Hong Kong Chinese patients: case control and family-based studies. Thyroid 1998; 8:777–780.

    PubMed  CAS  Google Scholar 

  105. Simanainen J, Kinch A, Westermark K et al. Analysis of mutations in exon 1 of the human thyrotropin receptor gene: High frequency of the D36H and P52T polymorphic variants. Thyroid 1999; 9:7–11.

    PubMed  CAS  Google Scholar 

  106. Kaczur V, Takacs M, Szalai C et al. Analysis of the genetic variability of the 1st (CCC/ACC, P52T) and the 10th exons (bp 1012–1704) of the TSH receptor gene in Graves’ disease. Eur J Immunogenet 2000; 27:17–23.

    PubMed  CAS  Google Scholar 

  107. Chistyakov DA, Savost’anov KV, Turakulov RI et al. Complex association analysis of graves disease using a set of polymorphic markers. Mol Genet Metab 2000; 70:214–218.

    PubMed  CAS  Google Scholar 

  108. Rapoport B, Chazenbalk GD, Jaume JC et al. The thyrotropin (TSH) receptor: Interaction with TSH and autoantibodies. Endocr Rev 1998; 19:673–716.

    PubMed  CAS  Google Scholar 

  109. Tomer Y, Barbesino G, Greenberg DA et al. Mapping the major susceptibility loci for familial Graves’ and Hashimoto’s diseases: Evidence for genetic heterogeneity and gene interactions. J Clin Endocrinol Metab 1999; 84:4656–4664.

    PubMed  CAS  Google Scholar 

  110. De Roux N, Shields DC, Misrahi M et al. Analysis of the thyrotropin receptor as a candidate gene in familial Graves’ disease. J Clin Endocrinol Metab 1996; 81:3483–3486.

    PubMed  Google Scholar 

  111. Chistiakov DA, Savost’anov KV, Turakulov RI et al. Further studies of genetic susceptibility to Graves’ disease in a Russian population. Med Sci Monit 2002; 8:CR180–CR184.

    PubMed  Google Scholar 

  112. Muhlberg T, Herrmann K, Joba W et al. Lack of association of nonautoimmune hyperfunctioning thyroid disorders and a germline polymorphism of codon 727 of the human thyrotropin receptor in a European Caucasian population. J Clin Endocrinol Metab 2000; 85:2640–2643.

    PubMed  CAS  Google Scholar 

  113. Ban Y, Greenberg DA, Concepcion ES et al. A germline single nucleotide polymorphism at the intracellular domain of the human thyrotropin receptor does not have a major effect on the development of Graves’ disease. Thyroid 2002; 12:1079–1083.

    PubMed  CAS  Google Scholar 

  114. Pirro MT, De Filippis V, Di Cerbo A et al. Thyroperoxidase microsatellite polymorphism in thyroid disease. Thyroid 1995; 5:461–464.

    PubMed  CAS  Google Scholar 

  115. Tomer Y, Barbesino G, Keddache M et al. Mapping of a major susceptibility locus for Graves’ disease (GD-1) to chromosome 14q31. J Clin Endocrinol Metab 1997; 82:1645–1648.

    PubMed  CAS  Google Scholar 

  116. Kawa A, Nakamura S, Nakazawa M et al. HLA-BW35 and B5 in Japanese patients with Graves’ disease. Acta Endocrinol (Copenh) 1977; 86:754–757.

    PubMed  CAS  Google Scholar 

  117. Inoue D, Sato K, Enomoto T et al. Correlation of HLA types and clinical findings in Japanese patients with hyperthyroid Graves’ disease: Evidence indicating the existence of four subpopulations. Clin Endocrinol (Oxf) 1992; 36:75–82.

    CAS  Google Scholar 

  118. Onuma H, Ota M, Sugenoya A et al. Association of HLA-DPB1*0501 with early-onset Graves’ disease in Japanese. Hum Immunol 1994; 39:195–201.

    PubMed  CAS  Google Scholar 

  119. Katsuren E, Awata T, Matsumoto C et al. HLA class II alleles in Japanese patients with Graves’ disease: Weak associations of HLA-DR and-DQ. Endocr J 1994; 41:599–603.

    PubMed  CAS  Google Scholar 

  120. Ohtsuka K, Nakamura Y. Human leukocyte antigens associated with hyperthyroid Graves ophthalmology in Japanese patients. Am J Ophthalmol 1998; 126:805–810.

    PubMed  CAS  Google Scholar 

  121. Chan SH, Yeo PP, Lui KF et al. HLA and thyrotoxicosis (Graves’ disease) in Chinese. Tissue Antigens 1978; 12:109–114.

    PubMed  CAS  Google Scholar 

  122. Cavan DA, Penny MA, Jacobs KH et al. The HLA association with Graves’ disease is sex-specific in Hong Kong Chinese subjects. Clin Endocrinol (Oxf) 1994; 40:63–66.

    CAS  Google Scholar 

  123. Chan SH, Lin YN, Wee GB et al. Human leucocyte antigen DNA typing in Singaporean Chinese patients with Graves’ disease. Ann Acad Med Singapore 1993; 22:576–579.

    PubMed  CAS  Google Scholar 

  124. Tan S, Chan S, Lee B et al. HLA association in Singapore children with Grave’s disease. Metabolism 1988; 37:518–519.

    Google Scholar 

  125. Yeo PP, Chan SH, Thai AC et al. HLA Bw46 and DR9 associations in Graves’ disease of Chinese patients are age-and sex-related. Tissue Antigens 1989; 34:179–184.

    PubMed  CAS  Google Scholar 

  126. Chen QY, Nadell D, Zhang XY et al. The human leukocyte antigen HLA DRB3*020/DQAl*0501 haplotype is associated with Graves’ disease in African Americans. J Clin Endocrinol Metab 2000; 85:1545–1549.

    PubMed  CAS  Google Scholar 

  127. Maciel LM, Rodrigues SS, Dibbern RS et al. Association of the HLA-DRBl*0301 and HLA-DQAl*0501 alleles with Graves’ disease in a population representing the gene contribution from several ethnic backgrounds. Thyroid 2001; 11:31–35.

    PubMed  CAS  Google Scholar 

  128. Honda K, Tamai H, Morita T et al. Hashimoto’s thyroiditis and HLA in Japanese. J Clin Endocrinol Metab 1989; 69:1268–1273.

    PubMed  CAS  Google Scholar 

  129. Hawkins BR, Lam KSL, Ma JTC et al. Strong association between HLA-DRw9 and Hashimoto’s thyroiditis in Southern Chinese. Acta Endocrinol 1987; 114:543–546.

    PubMed  CAS  Google Scholar 

  130. Hawkins BR, Ma JT, Lam KS et al. Analysis of linkage between HLA haplotype and susceptibility to Graves’ disease in multiple-case Chinese families in Hong Kong. Acta Endocrinol (Copenh) 1985; 110:66–69.

    PubMed  CAS  Google Scholar 

  131. Akamizu T, Sale MM, Rich SS et al. Association of autoimmune thyroid disease with microsatellite markers for the thyrotropin receptor gene and CTLA-4 in Japanese patients. Thyroid 2000; 10:851–858.

    PubMed  CAS  Google Scholar 

  132. Kinjo Y, Takasu N, Komiya I et al. Remission of Graves’ hyperthyroidism and A/G polymorphism at position 49 in exon 1 of cytotoxic T lymphocyte-associated molecule-4 gene. J Clin Endocrinol Metab 2002; 87:2593–2596.

    PubMed  CAS  Google Scholar 

  133. Sale MM, Akamizu T, Howard TD et al. Association of autoimmune thyroid disease with a microsatellite marker for the thyrotropin receptor gene and CTLA-4 in a Japanese population. Proc Assoc Am Physicians 1997; 109:453–461.

    PubMed  CAS  Google Scholar 

  134. Nagataki S. The interaction of MHC and Gm in liability to autoimmune thyroid disease. Mol Biol Med 1986; 3:73–84.

    PubMed  CAS  Google Scholar 

  135. Nakao Y, Matsumoto H, Miyazaki T et al. IgG heavy chain allotypes (Gm) in atrophic and goitrous thyroiditis. Clin Exp Immunol 1980; 42:20–26.

    PubMed  CAS  Google Scholar 

  136. Kamizono S, Hiromatsu Y, Seki N et al. A polymorphism of the 5’ flanking region of tumour necrosis factor alpha gene is associated with thyroid-associated ophthalmopathy in japanese. Clin Endocrinol (Oxf) 2000; 52:759–764.

    CAS  Google Scholar 

  137. Ban Y, Taniyama M, Ban Y. Vitamin D receptor gene polymorphism is associated with Graves’ disease in the Japanese population. J Clin Endocrinol Metab 2000; 85:4639–4643.

    PubMed  CAS  Google Scholar 

  138. Kim TY, Park YJ, Hwang JK et al. A C/T Polymorphism in the 5−-untranslated region of the CD40 gene is associated with Graves’ Disease in Koreans. Thyroid. 2003; 13:919–925.

    PubMed  Google Scholar 

  139. Yamazaki K, Takazoe M, Tanaka T et al. Absence of mutation in the NOD2/CARD15 gene among 483 Japanese patients with Crohn’s disease. J Hum Genet 2002; 47:469–472.

    PubMed  CAS  Google Scholar 

  140. Buus S, Sette A, Grey HM. The interaction between protein-derived immunogenic peptides and Ia. Immunol Rev 1987; 98:115–141.

    PubMed  CAS  Google Scholar 

  141. Nelson JL, Hansen JA. Autoimmune disease and HLA. CRC Crit Rev Immunol 1990; 10:307–328.

    CAS  Google Scholar 

  142. Faas S, Trucco M. The genes influencing the susceptibility to IDDM in humans. J Endocrinol Invest 1994; 17:477–495.

    PubMed  CAS  Google Scholar 

  143. Aitman TJ, Todd JA. Molecular genetics of diabetes mellitus. Baillière’s Clin Endocrinol Metab 1995; 9:631–656.

    CAS  Google Scholar 

  144. Morel PA, Dorman JS, Todd JA et al. Aspartic acid at position 57 of the HLA-DQ beta-chain protects against type I diabetes: A family study. Proc Natl Acad Sci USA 1988; 85:8111–8115.

    PubMed  CAS  Google Scholar 

  145. Brown JH, Jardetzky T, Gorga JC et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 1993; 364:33–39.

    PubMed  CAS  Google Scholar 

  146. Lee KH, Wucherpfennig KW, Wiley DC. Structure of a human insulin peptide-HLA-DQ8 complex and susceptibility to type 1 diabetes. Nat Immunol 2001; 2:501–507.

    PubMed  CAS  Google Scholar 

  147. Wucherpfennig KW. Insights into autoimmunity gained from structural analysis of MHC-peptide complexes. Curr Opin Immunol 2001; 13:650–656.

    PubMed  CAS  Google Scholar 

  148. Sawai Y, DeGroot LJ. Binding of human thyrotropin receptor peptides to a Graves’ disease-predisposing human leukocyte antigen class II molecule. J Clin Endocrinol Metab 2000; 85:1176–1179.

    PubMed  CAS  Google Scholar 

  149. Hanafusa T, Pujol Borrell R, Chiovato L et al. Aberrant expression of HLA-DR antigen on thyrocytes in Graves’ disease: Relevance for autoimmunity. Lancet 1983; 2:1111–1115.

    PubMed  CAS  Google Scholar 

  150. Bottazzo GF, Pujol Borrell R, Hanafusa T et al. Role of aberrant HLA-DR expression and antigen presentation in induction of endocrine autoimmunity. Lancet 1983; 2:1115–1119.

    PubMed  CAS  Google Scholar 

  151. Davies TF. Cocultures of human thyroid monolayer cells and autologous T cells: Impact of HLA class II antigen expression. J Clin Endocrinol Metab 1985; 61:418–422.

    PubMed  CAS  Google Scholar 

  152. Londei M, Lamb JR, Bottazzo GF et al. Epithelial cells expressing aberrant MHC class II determinants can present antigen to cloned human T cells. Nature 1984; 312:639–641.

    PubMed  CAS  Google Scholar 

  153. Davies TF, Piccinini LA. Intrathyroidal MHC class II antigen expression and thyroid autoimmunity. Endocrinol Metab Clin North Am 1987; 16:247–268.

    PubMed  CAS  Google Scholar 

  154. Neufeld DS, Platzer M, Davies TF. Reovirus induction of MHC class II antigen in rat thyroid cells. Endocrinology 1989; 124:543–545.

    PubMed  CAS  Google Scholar 

  155. Belfiore A, Mauerhoff T, Pujol Borrell R et al. De novo HLA class II and enhanced HLA class I molecule expression in SV40 transfected human thyroid epithelial cells. J Autoimmun 1991; 4:397–414.

    PubMed  CAS  Google Scholar 

  156. Shimojo N, Kohno Y, Yamaguchi K et al. Induction of Graves-like disease in mice by immunization with fibroblasts transfected with the thyrotropin receptor and a class II molecule. Proc Natl Acad Sci USA 1996; 93:11074–11079.

    PubMed  CAS  Google Scholar 

  157. Kita M, Ahmad L, Marians RC et al. Regulation and transfer of a murine model of thyrotropin receptor antibody mediated Graves’ disease. Endocrinology 1999; 140:1392–1398.

    PubMed  CAS  Google Scholar 

  158. Davies TF, Bermas B, Platzer M et al. T-cell sensitization to autologous thyroid cells and normal non specific suppressor T-cell function in Graves’ disease. Clin-Endocrinol (Oxf) 1985; 22:155–167.

    CAS  Google Scholar 

  159. Eguchi K, Otsubo T, Kawabe K et al. The remarkable proliferation of helper T cell subset in response to autologous thyrocytes and intrathyroidal T cells from patients with Graves’ disease. Isr J Med Sci 1987; 70:403–410.

    CAS  Google Scholar 

  160. Migita K, Eguchi K, Otsubo T et al. Cytokine regulation of HLA on thyroid epithelial cells. Clin Exp Immunol 1990; 82:548–552.

    PubMed  CAS  Google Scholar 

  161. Weetman AP, McGregor AM. Autoimmune thyroid disease: Further developments in our understanding. Endocr Rev 1994; 15:788–830.

    PubMed  CAS  Google Scholar 

  162. Kouki T, Sawai Y, Gardine CA et al. CTLA-4 Gene polymorphism at position 49 in exon 1 reduces the inhibitory function of CTLA-4 and contributes to the pathogenesis of Graves’ Disease. J Immunol 2000; 165:6606–6611.

    PubMed  CAS  Google Scholar 

  163. Xu Y, Graves P, Tomer Y et al. CTLA-4 and autoimmune thyroid disease: Lack of influence of the A49G signal peptide polymorphism on functional recombinant human CTLA-4. Cell Immunol 2002; 215:133.

    PubMed  CAS  Google Scholar 

  164. Huang D, Giscombe R, Zhou Y et al. Dinudeotide repeat expansion in the CTLA-4 gene leads to T cell hyper-reactivity via the CD28 pathway in myasthenia gravis. J Neuroimmunol 2000; 105:69–77.

    PubMed  CAS  Google Scholar 

  165. Holopainen PM, Partanen J. Technical note: Linkage disequilibrium and disease-associated CTLA-4 gene polymorphisms. J Immunol 2001; 167:2457–2458.

    PubMed  CAS  Google Scholar 

  166. Ban Y, Greenberg DA, Concepcion ES et al. Amino acid substitutions in the thyroglobulin gene confer susceptibility to autoimmune thyroid disease. Philadelphia, PA: The 85th Annual Meeting of the Endocrine Society, 2003.

    Google Scholar 

  167. Saegusa K, Ishimaru N, Yanagi K et al. Cathepsin S inhibitor prevents autoantigen presentation and autoimmunity. J Clin Invest 2002; 110:361–369.

    PubMed  CAS  Google Scholar 

  168. Bagchi N, Brown TR, Urdanivia E et al. Induction of autoimmune thyroiditis in chickens by dietary iodine. Science 1985; 230:325–327.

    PubMed  CAS  Google Scholar 

  169. Kahaly GJ, Dienes HP, Beyer J et al. Iodide induces thyroid autoimmunity in patients with endemic goitre: A randomised, double-blind, placebo-controlled trial. Eur J Endocrinol 1998; 139:290–297.

    PubMed  CAS  Google Scholar 

  170. Papanastasiou L, Alevizaki M, Piperingos G et al. The effect of iodine administration on the development of thyroid autoimmunity in patients with nontoxic goiter. Thyroid 2000; 10:493–497.

    PubMed  CAS  Google Scholar 

  171. Kong YC, McCormick DJ, Wan Q et al. Primary hormonogenic sites as conserved autoepitopes on thyroglobulin in murine autoimmune thyroiditis. Secondary role of iodination. J Immunol 1995; 155:5847–5854.

    PubMed  CAS  Google Scholar 

  172. Hutchings PR, Cooke A, Dawe K et al. A thyroxine-containing peptide can induce murine experimental autoimmune thyroiditis. J Exp Med 1992; 175:869–872.

    PubMed  CAS  Google Scholar 

  173. Stenszky V, Kozma L, Balazs C et al. The genetics of Graves’ disease: HLA and disease susceptibility. J Clin Endocrinol Metab 1985; 61:735–740.

    PubMed  CAS  Google Scholar 

  174. Weetman AP, So AK, Warner CA et al. Immunogenetics of Graves’ ophthalmopathy. Clinical Endocrinology 1988; 28:619–628.

    PubMed  CAS  Google Scholar 

  175. Chen QY, Huang W, She JX et al. HLA-DRB1*08, DRBl*03/DRB3*0101, and DRB3*0202 are susceptibility genes for Graves’ disease in North American Caucasians, whereas DRB1*O7 is protective. J Clin Endocrinol Metab 1999; 84:3182–3186.

    PubMed  CAS  Google Scholar 

  176. Hawkins BR, Ma JT, Lam KS et al. Association of HLA antigens with thyrotoxic Graves’ disease and periodic paralysis in Hong Kong Chinese. Clin Endocrinol (Oxf) 1985; 23:245–252.

    CAS  Google Scholar 

  177. Dong RP, Kimura A, Okubo R et al. HLA-A and DPB1 loci confer susceptibility to Graves’ disease. Hum Immunol 1992; 35:165–172.

    PubMed  CAS  Google Scholar 

  178. Cho BY, Rhee BD, Lee DS et al. HLA and Graves’ disease in Koreans. Tissue Antigens 1987; 30:119–121.

    PubMed  CAS  Google Scholar 

  179. Tandon N, Mehra NK, Taneja V et al. HLA antigens in Asian Indian patients with Graves’ disease. Clin Endocrinol (Oxf) 1990; 33:21–26.

    CAS  Google Scholar 

  180. Sridama V, Hara Y, Fauchet R et al. HLA immunogentic heterogenity in Black American pateitns with Graves’ disease. Arch Intern Med 1987; 147:229–231.

    PubMed  CAS  Google Scholar 

  181. Chen QY, Nadell D, Zhang XY et al. The human leukocyte antigen HLA DRB3*020/DQA1*0501 haplotype is associated with Graves’ disease in African Americans. J Clin Endocrinol Metab 2000; 85:1545–1549.

    PubMed  CAS  Google Scholar 

  182. Omar MA, Hammond MG, Desai RK et al. HLA class I and II antigens in South African blacks with Graves’ disease. Clin Immunol Immunopathol 1990; 54:98–102.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Ban, Y., Tomer, Y. (2006). Endocrine Diseases. In: Immunogenetics of Autoimmune Disease. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-39926-3_4

Download citation

Publish with us

Policies and ethics