Skip to main content

Endocrine Diseases

Type I Diabetes Mellitus

  • Chapter
Immunogenetics of Autoimmune Disease

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 664 Accesses

Abstract

Type 1 diabetes (T1D) [MIM 222100] is the third most prevalent chronic disease of childhood, affecting up to 0.4% of individuals in some populations by age 30 years, with an overall lifetime risk of nearly 1%.1,2 T1D is caused by absolute insulin deficiency due to destruction of the pancreatic β-cells. The majority of T1D cases are believed to develop as a result of immune-mediated destruction of the β-cells, leaving a small proportion of idiopathic cases in which immune markers cannot be detected, which are caused by other pathogenetic mechanisms such as rare genetic syndromes, β-cell lytic virus infections, or environmental factors.3 T1D is associated with an increased risk of premature death due to acute complications and chronic disabling and life-threatening manifestations, including eye disease and blindness, renal failure, neuropathy and cardiovascular disease.4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mølbak AG, Christau B, Marner B et al. Incidence of insulin-dependent diabetes mellitus in age groups over 30 years in Denmark. Diabet Med 1994; 11(7):650–655.

    PubMed  Google Scholar 

  2. Karvonen M, Viik-Kajander M, Moltchanova E et al. Incidence of childhood type 1 diabetes worldwide. Diabetes Care 2000; 23(10):1516–1526.

    PubMed  CAS  Google Scholar 

  3. Alberti K, Zimmet P. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998; 15(7):539–553.

    PubMed  CAS  Google Scholar 

  4. Borch-Johnsen K. The prognosis of insulin-dependent diabetes mellitus. An epidemiological approach. Dan Med Bull 1989; 36(4):336–348.

    PubMed  CAS  Google Scholar 

  5. Hirschhorn J. Genetic epidemiology of type 1 diabetes. Ped Diab 2003; 4(2):87–100.

    Google Scholar 

  6. Hyttinen V, Kaprio J, Kinnunen L et al. Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: A nationwide follow-up study. Diabetes 2003; 52(4):1052–1055.

    PubMed  CAS  Google Scholar 

  7. Svensson J, Carstensen B, Molbak A et al. Increased risk of childhood type 1 diabetes in children born after 1985. Diabetes Care 2002; 25(12):2197–2201.

    PubMed  Google Scholar 

  8. Onkamo P, Karvonen M, Tuomilehto J. Worldwide increase in incidence of Type I diabetes-the analysis of the data on published incidence trends. Diabetolog 1999; 42(12):1395–1403.

    CAS  Google Scholar 

  9. Kyvik K, Green A, Beck-Nielsen H. Concordance rates of insulin dependent diabetes mellitus: A population based study of young Danish twins. BMJ (Clinical research ed.) 1995; 311(7010):913–917.

    CAS  Google Scholar 

  10. Redondo M, Yu L, Hawa M et al. Heterogeneity of type I diabetes: Analysis of monozygotic twins in Great Britain and the United States. Diabetolog 2001; 44(3):354–362.

    CAS  Google Scholar 

  11. Pociot F, McDermott MF. Genetics of Type 1 diabetes mellitus. Genes Immun 2002; 3(5):235–249.

    PubMed  CAS  Google Scholar 

  12. Noble J, Valdes A, Cook M et al. The role of HLA class-II genes in Insulin-dependent diabetes mellitus-Molecular analysis of 180 Caucasian, multiplex families. Am J Hum Genet 1996; 59(5):1134–1148.

    PubMed  CAS  Google Scholar 

  13. Valdes A, Noble J, Clerget-Darpoux F et al. Modeling of HLA class II susceptibility to Type I diabetes reveals an effect associated with DPB1. Genet Epidem 2001; 21(3):212–223.

    CAS  Google Scholar 

  14. Rich S. Mapping genes in diabetes. Genetic epidemiological perspective. Diabetes 1990; 39(11):1315–1319.

    PubMed  CAS  Google Scholar 

  15. Singal D, Blajchman M. Histocompatibility (HL-A) antigens, lymphocytotoxic antibodies and tissue antibodies in patients with diabetes mellitus. Diabetes 1973; 22(6):429–432.

    PubMed  CAS  Google Scholar 

  16. Nerup J, Platz P, Andersen O et al. HL-A antigens and diabetes mellitus. Lancet 1974; 2(7885):864–866.

    PubMed  CAS  Google Scholar 

  17. Koeleman B, Lie B, Undlien D et al. Genotype effects and epistasis in type 1 diabetes and HLA-DQ trans dimer associations with disease. Genes Immun 2004; 5(5):381–388.

    PubMed  CAS  Google Scholar 

  18. She JX. Susceptibility to type I diabetes: HLA-DQ and DR revisited. Immunol Tod 1996; 17(7):323–329.

    CAS  Google Scholar 

  19. Thorsby E. Invited anniversary review: HLA associated diseases. Human Immun 1997; 53(1):1–11.

    CAS  Google Scholar 

  20. Dorman J, Bunker C. HLA-DQ locus of the human leukocyte antigen complex and type 1 diabetes mellitus: A HuGE review. Epidemiol Rev 2000; 22(2):218–227.

    PubMed  CAS  Google Scholar 

  21. Undlien DE, Lie BA, Thorsby E. HLA complex genes in type 1 diabetes and other autoimmune diseases. Which genes are involved? Trends Genet 2001; 17(2):93–100.

    PubMed  CAS  Google Scholar 

  22. Ronningen K, Keiding N, Green A et al. Correlations between the incidence of childhood-onset type I diabetes in Europe and HLA genotypes. Diabetolog 2001; 44(Suppl 3):B51–B59.

    CAS  Google Scholar 

  23. Cucca F, Todd J. HLA susceptibility to type 1 diabetes: Methods and mechanisms. In: Browning M, McMichaels A, eds. HLA and MHC: Genes, molecules and function. Oxford: BIOS Scientific Publishers Ltd, 1996:383–406.

    Google Scholar 

  24. Lambert A, Gillespie K, Thomson G et al. Absolute risk of childhood-onset type 1 diabetes defined by human leukocyte antigen class II genotype: A population-based study in the United Kingdom. J Clin. Endocrinol Metab 2004; 89(8):4037–4043.

    CAS  Google Scholar 

  25. Type 1 Diabetes Genetics Consortium. Type 1 Diabetes: Evidence for susceptibility loci from four genome-wide scans in 1435 multiplex families. Diabetes 2005; In press.

    Google Scholar 

  26. Cucca F, Lampis R, Congia M et al. A correlation between the relative predisposition of MHC class II alleles to type 1 diabetes and the structure of their proteins. Hum Mol Gen 2001; 10(19):2025–2037.

    PubMed  CAS  Google Scholar 

  27. Lee K, Wucherpfennig K, Wiley D. Structure of a human insulin peptide-HLA-DQ8 complex and susceptibility to type I diabetes. Nat Immunol 2001; 2(6):501–507.

    PubMed  CAS  Google Scholar 

  28. Latek R, Suri A, Petzold S et al. Structural basis of peptide binding and presentation by the type I diabetes-associated MHC class II molecule of NOD mice. Immunity 2000; 12(6):699–710.

    PubMed  CAS  Google Scholar 

  29. Stratmann T, Apostolopoulos V, Mallet-Designe V et al. The I-Ag7 MHC class II molecule linked to murine diabetes is a promiscuous peptide binder. J Immunol 2000; 165(6):3214–3225.

    PubMed  CAS  Google Scholar 

  30. Chao C, Sytwu H, Chen E et al. The role of MHC class II molecules in susceptibility to type I diabetes: Identification of peptide epitopes and characterization of the T cell repertoire. PNAS US 1999; 96(16):9299–9304.

    CAS  Google Scholar 

  31. Siebold C, Hansen B, Wyer J et al. Crystal structure of HLA-DQ0602 that protects against type 1 diabetes and confers strong susceptibility to narcolepsy. PNAS US 2004; 101(7):1999–2004.

    CAS  Google Scholar 

  32. Todd JA, Wicker LS. Genetic protection from the inflammatory disease type 1 diabetes in humans and animal models. Immunity 2001; 15(3):387–395.

    PubMed  CAS  Google Scholar 

  33. Corper A, Stratmann T, Apostolopoulos V et al. A structural framework for deciphering the link between I-Ag7 and autoimmune diabetes. Science 2000; 288(5465):505–511.

    PubMed  CAS  Google Scholar 

  34. Kwok W, Domeier M, Johnson M et al. HLA-DQB1 codon 57 is critical for peptide binding and recognition. J Exp Med 1996; 183(3):1253–1258.

    PubMed  CAS  Google Scholar 

  35. Awata T, Kuzuya T, Matsuda A et al. High frequency of aspartic acid at position 57 of HLA-DQ beta-chain in Japanese IDDM patients and nondiabetic subjects. Diabetes 1990; 39(2):266–269.

    PubMed  CAS  Google Scholar 

  36. Yamagata K, Hanafusa T, Nakajima H et al. HLA-DP and susceptibility to insulin-dependent diabetes mellitus in Japanese. Tissue Antigens 1991; 38(3):107–110.

    PubMed  CAS  Google Scholar 

  37. Thomsen M, Molvig J, Zerbib A et al. The susceptibility to insulin-dependent diabetes mellitus is associated with C4 allotypes independently of the association with HLA-DQ alleles in HLA-DR3,4 heterozygotes. Immunogenetics 1988; 28(5):320–327.

    PubMed  CAS  Google Scholar 

  38. Pociot F, Molvig J, Wogensen L et al. A tumour necrosis factor beta gene polymorphism in relation to monokine secretion and insulin-dependent diabetes mellitus. Scand J Immunol 1991; 33(1):37–49.

    PubMed  CAS  Google Scholar 

  39. Robinson W, Barbosa J, Rich S et al. Homozygous parent affected sib pair method for detecting disease predisposing variants: Application to insulin dependent diabetes mellitus. Genet Epidem 1993; 10(5):273–288.

    CAS  Google Scholar 

  40. Erlich H, Rotter J, Chang J et al. Association of HLA-DPB1*0301 with IDDM in Mexican-Americans. Diabetes 1996; 45(5):610–614.

    PubMed  CAS  Google Scholar 

  41. Noble J, Valdes A, Thomson G et al. The HLA class II locus DPB1 can influence susceptibility to type 1 diabetes. Diabetes 2000; 49(1):121–125.

    PubMed  CAS  Google Scholar 

  42. Lie B, Akselsen H, Joner G et al. HLA associations in insulin-dependent diabetes mellitus: No independent association to particular DP genes. Human Immun 1997; 55(2):170–175.

    CAS  Google Scholar 

  43. Cruz T, Valdes A, Santiago A et al. DPB1 alleles are associated with type 1 diabetes susceptibility in multiple ethnic groups. Diabetes 2004; 53(8):2158–2163.

    PubMed  CAS  Google Scholar 

  44. Caillat-Zucman S, Daniel S, Djilali-Saiah I et al. Family study of linkage disequilibrium between TAP2 transporter and HLA class II genes. Absence of TAP2 contribution to association with insulin-dependent diabetes mellitus. Human Immun 1995; 44(2):80–87.

    CAS  Google Scholar 

  45. van Endert P, Liblau R, Patel S et al. Major histocompatibility complex-encoded antigen processing gene polymorphism in IDDM. Diabetes 1994; 43(1):110–117.

    PubMed  Google Scholar 

  46. Undlien D, Akselsen H, Joner G et al. No independent associations of LMP2 and LMP7 polymorphisms with susceptibility to develop IDDM. Diabetes 1997; 46(2):307–312.

    PubMed  CAS  Google Scholar 

  47. Bidwell J, Keen L, Gallagher G et al. Cytokine gene polymorphism in human disease: On-line databases, supplement 1. Genes Immun 2001; 2(2):61–70.

    PubMed  CAS  Google Scholar 

  48. Bidwell J, Keen L, Gallagher G et al. Cytokine gene polymorphism in human disease: On-line databases. Genes Immun 1999; 1(1):3–19.

    PubMed  CAS  Google Scholar 

  49. Pociot F, Wilson AG, Nerup J et al. No independent association between a tumor necrosis factor-alpha promotor region polymorphism and insulin-dependent diabetes mellitus. Eur J Immun 1993; 23(11):3050–3053.

    CAS  Google Scholar 

  50. MHC Sequencing Consortium. Complete sequence and gene map of a human major histocompatibility complex. Nature 1999; 401(6756):921–923.

    Google Scholar 

  51. Gambelunghe G, Ghaderi M, Cosentino A et al. Association of MHC Class I chain-related A (MIC-A) gene polymorphism with Type I diabetes. Diabetolog 2000; 43(4):507–514.

    CAS  Google Scholar 

  52. Bilbao J, Martin-Pagola A, Calvo B et al. Contribution of MIC-A polymorphism to type 1 diabetes mellitus in basques. Ann NY Acad Sci 2002; 958(1):321–324.

    PubMed  CAS  Google Scholar 

  53. Sanjeevi CB, Kanungo A, Berzina L et al. MHC class I chain-related gene A alleles distinguish malnutrition-modulated diabetes, insulin-dependent diabetes, and noninsulin-dependent diabetes mellitus patients from Eastern India. Ann NY Acad Sci 2002; 958(1):341–344.

    PubMed  CAS  Google Scholar 

  54. Tica V, Nikitina-Zake L, Donadi E et al. MIC-A Genotypes 4/5.1 and 9/9 are positively associated with type 1 diabetes mellitus in brazilian population. Ann NY Acad Sci 2003; 1005(1):310–313.

    PubMed  Google Scholar 

  55. Gupta M, Nikitina-Zake L, Zarghami M et al. Association between the transmembrane region polymorphism of MHC class I chain related gene-A and type 1 diabetes mellitus in Sweden. Human Immun 2003; 64(5):553–561.

    CAS  Google Scholar 

  56. Moghaddam P, Zwinderman A, de Knijff P et al. TNFa microsatellite polymorphism modulates the risk of IDDM in Caucasians with the high-risk genotype HLA DQAl*0501-DQB1*0201/DQAl*0301-DQBl*0302. Belgian Diabetes Registry. Diabetes 1997; 46(9):1514–1515.

    PubMed  CAS  Google Scholar 

  57. Nejentsev S, Reijonen H, Adojaan B et al. The effect of HLA-B allele on the IDDM risk defined by DRB1*04 subtypes and DQB1*0302. Diabetes 1997; 46(11):1888–1892.

    PubMed  CAS  Google Scholar 

  58. Lie B, Todd J, Pociot F et al. The predisposition to type 1 diabetes linked to the human leukocyte antigen complex includes at least one nonclass II gene. Am J Hum Genet 1999; 64(3):793–800.

    PubMed  CAS  Google Scholar 

  59. Nejentsev S, Gombos Z, Laine A et al. Nonclass II HLA gene associated with type 1 diabetes maps to the 240-kb region near HLA-B. Diabetes 2000; 49(12):2217–2221.

    PubMed  CAS  Google Scholar 

  60. Herr M, Dudbridge F, Zavattari P et al. Evaluation of fine mapping strategies for a multifactorial disease locus: Systematic linkage and association analysis of IDDM 1 in the HLA region on chromosome 6p21. Hum Mol Gen 2000; 9(9):1291–1301.

    PubMed  CAS  Google Scholar 

  61. Cordell H, Clayton D. A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: Application to HLA in type 1 diabetes. Am J Hum Genet 2002; 70(1):124–141.

    PubMed  CAS  Google Scholar 

  62. Zavattari P, Lampis R, Motzo C et al. Conditional linkage disequilibrium analysis of a complex disease superlocus, IDDM1 in the HLA region, reveals the presence of independent modifying gene effects influencing the type 1 diabetes risk encoded by the major HLA-DQB1,-DRB1 disease loci. Hum Mol Gen 2001; 10(8):881–889.

    PubMed  CAS  Google Scholar 

  63. Hashimoto L, Habita C, Beressi JP et al. Genetic mapping of a susceptibility locus for insulin-dependent diabetes mellitus on chromosome 11q. Nature 1994; 371(6493):161–164.

    PubMed  CAS  Google Scholar 

  64. Davies JL, Kawaguchi Y, Bennett ST et al. A genome-wide search for human type-1 diabetes susceptibility genes. Nature 1994; 371(6493):130–136.

    PubMed  CAS  Google Scholar 

  65. Mein CA, Esposito L, Dunn MG et al. A search for type 1 diabetes susceptibility genes in families from the United Kingdom. Nature Genet 1998; 19(3):297–300.

    PubMed  CAS  Google Scholar 

  66. Concannon P, Gogolin-Ewens KJ, Hinds DA et al. A second-generation screen of the human genome for susceptibility to insulin-dependent diabetes mellitus. Nature Genet 1998; 19(3):292–296.

    PubMed  CAS  Google Scholar 

  67. Cox NJ, Wapelhorst B, Morrison VA et al. Seven regions of the genome show evidence of linkage to type 1 diabetes in a consensus analysis of 767 multiplex families. Am J Hum Genet 2001; 69(4):820–830.

    PubMed  CAS  Google Scholar 

  68. Nerup J, Pociot F, European Consortium for IDDM genome studies. A genomewide scan for Type 1-diabetes susceptibility in Scandinavian families: Identification of new loci with evidence of interactions. Am J Hum Genet 2001; 69(6):1301–1313.

    PubMed  CAS  Google Scholar 

  69. Ueda H, Howson JMM, Esposito L et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003; 423(6939):506–511.

    PubMed  CAS  Google Scholar 

  70. Pociot F. CTLA-4 in Autoimmune Disease. In: Pociot F, ed. Georgetown, Texas, USA: Landes Bioscience, 2004.

    Google Scholar 

  71. Pugliese A, Zeller M, Fernandez A et al. The insulin gene is transcribed in the human thymus and transcription levels correlate with allelic variation at the ins vntr-iddm2 susceptibility locus for type-1 diabetes. Nature Genet 1997; 15(3):293–297.

    PubMed  CAS  Google Scholar 

  72. Vafiadis P, Ounissi-Benkalha H, Palumbo M et al. Class III alleles of the variable number of tandem repeat insulin polymorphism associated with silencing of thymic insulin predispose to type 1 diabetes. J Clin Endocrinol Metab 2001; 86(8):3705–3710.

    PubMed  CAS  Google Scholar 

  73. Delepine M, Pociot F, Habita C et al. Evidence of a nonMHC susceptibility locus in type I diabetes linked to HLA on chromosome 6. Am J Hum Genet 1997; 60(1):174–187.

    PubMed  CAS  Google Scholar 

  74. Fisher S, Lanchbury J, Lewis C. Meta-analysis of four rheumatoid arthritis genome-wide linkage studies: Confirmation of a susceptibility locus on chromosome 16. Arthritis Rheum 2003; 48(5):1200–1206.

    PubMed  CAS  Google Scholar 

  75. Tait K, Marshall T, Berman J et al. Clustering of autoimmune disease in parents of siblings from the Type 1 diabetes Warren repository. Diabet Med 2004; 21(4):358–362.

    PubMed  CAS  Google Scholar 

  76. Nair R, Henseler T, Jenisch S et al. Evidence for two psoriasis susceptibility loci (HLA and 17q) and two novel candidate regions (16q and 20p) by genome-wide scan. Hum Mol Gen 1997; 6(8):1349–1356.

    PubMed  CAS  Google Scholar 

  77. Ober C, Tsalenko A, Parry R et al. A second-generation genomewide screen for asthma-susceptibility alleles in a founder population. Am J Hum Genet 2000; 67(5):1154–1162.

    PubMed  CAS  Google Scholar 

  78. King A, Yiannakou J, Brett P et al. A genome-wide family-based linkage study of coeliac disease. Ann Hum Gen 2000; 64 (Pt 6):479–490.

    CAS  Google Scholar 

  79. Rambrand T, Pociot F, Ronningen K et al. Genetic markers for glutamic acid decarboxylase do not predict insulin-dependent diabetes mellitus in pairs of affected siblings. The Danish Study Group of Diabetes in Childhood. Hum Genet 1997; 99(2):177–185.

    PubMed  CAS  Google Scholar 

  80. Wapelhorst B, Bell G, Risch N et al. Linkage and association studies in insulin-dependent diabetes with a new dinucleotide repeat polymorphism at the GAD65 locus. Autoimmun 1995; 21(2):127–130.

    CAS  Google Scholar 

  81. Johnson G, Payne F, Nutland S et al. A comprehensive, statistically powered analysis of GAD2 in type 1 diabetes. Diabetes 2002; 51(9):2866–2870.

    PubMed  CAS  Google Scholar 

  82. Morahan G, Huang DX, Ymer SI et al. Linkage disequilibrium of a type 1 diabetes susceptibility locus with a regulatory IL12B allele. Nature Genet 2001; 27(2):218–221.

    PubMed  CAS  Google Scholar 

  83. Bergholdt R, Ghandil P, Johannesen J et al. Genetic and functional evaluation of an interleukin-12 polymorphism (IDDM18) in families with type 1 diabetes. J Med Genet 2004; 41(4):e39.

    PubMed  CAS  Google Scholar 

  84. Hypponen E, Laara E, Reunanen A et al. Intake of vitamin D and risk of type 1 diabetes: A birth-cohort study. Lancet 2001; 358(9292):1500–1503.

    PubMed  CAS  Google Scholar 

  85. Lemire J. Immunomodulatory role of 1,25-dihydroxyvitamin D3. J Cell Biochem 1992; 49(1):26–31.

    PubMed  CAS  Google Scholar 

  86. Hitman G, Mannan N, McDermott M et al. Vitamin D receptor gene polymorphisms influence insulin secretion in Bangladeshi Asians. Diabetes 1998; 47(4):688–690.

    PubMed  CAS  Google Scholar 

  87. Ogunkolade B, Boucher B, Prahl J et al. Vitamin D receptor (VDR) mRNA and VDR protein levels in relation to vitamin D status, insulin secretory capacity, and VDR genotype in Bangladeshi Asians. Diabetes 2002; 51(7):2294–2300.

    PubMed  CAS  Google Scholar 

  88. Zmuda J, Cauley J, Ferrell R. Molecular epidemiology of vitamin D receptor gene variants. Epidemiol Rev 2000; 22(2):203–217.

    PubMed  CAS  Google Scholar 

  89. McDermott M, Ramachandran A, Ogunkolade B et al. Allelic variation in the vitamin D receptor influences susceptibility to IDDM in Indian Asians. Diabetolog 1997; 40(8):971–975.

    CAS  Google Scholar 

  90. Pani M, Knapp M, Donner H et al. Vitamin D receptor allele combinations influence genetic susceptibility to type 1 diabetes in Germans. Diabetes 2000; 49(3):504–507.

    PubMed  CAS  Google Scholar 

  91. Chang T, Lei H, Yeh J et al. Vitamin D receptor gene polymorphisms influence susceptibility to type 1 diabetes mellitus in the Taiwanese population. Clin Endocrinol 2000; 52(5):575–580.

    CAS  Google Scholar 

  92. Fassbender W, Goertz B, Steinhauer B et al. VDR gene polymorphisms are overrepresented in german patients with type 1 diabetes compared to healthy controls without effect on biochemical parameters of bone metabolism. Hormone Met 2002; 34(6):330–337.

    CAS  Google Scholar 

  93. Guja C, Marshall S, Welsh K et al. The study of CTLA-4 and vitamin D receptor polymorphisms in the Romanian type 1 diabetes population. J Cell Mol Med 2002; 6(1):75–81.

    PubMed  CAS  Google Scholar 

  94. Koeleman B, Valdigem G, Eerligh P et al. Seasonality of birth in patients with type 1 diabetes. Lancet 2002; 359(9313):1246–7, (author reply 1247–8).

    PubMed  Google Scholar 

  95. Audi L, Marti G, Esteban C et al. VDR gene polymorphism at exon 2 start codon (FokI) may have influenced Type 1 diabetes mellitus susceptibility in two Spanish populations. Diabet Med 2004; 21(4):393–394.

    PubMed  CAS  Google Scholar 

  96. Turpeinen H, Hermann R, Vaara S et al. Vitamin D receptor polymorphisms: No association with type 1 diabetes in the Finnish population. Eur J Endocrinol 2003; 149(6):591–596.

    PubMed  CAS  Google Scholar 

  97. Nejentsev S, Cooper J, Godfrey L et al. Analysis of the vitamin D receptor gene sequence variants in type 1 diabetes. Diabetes 2004; 53(10):2709–2712.

    PubMed  CAS  Google Scholar 

  98. Hypponen E. Micronutrients and the risk of type 1 diabetes: Vitamin D, vitamin E, and nicotina-mide. Nutr Rev 2004; 62(9):340–347.

    PubMed  Google Scholar 

  99. Delepine M, Nicolino M, Barrett T et al. EIF2AK3, encoding translation initiation factor 2-&al-pha; kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nature Genet 2000; 25(4):406–409.

    PubMed  CAS  Google Scholar 

  100. Allotey R, Mohan V, McDermott M et al. The EIF2AK3 gene region and type I diabetes in subjects from South India. Genes Immun 2004; 5(8):648–652.

    PubMed  CAS  Google Scholar 

  101. Senee V, Vattem KM, Delepine M et al. Wolcott-Rallison Syndrome: Clinical, genetic, and functional study of EIF2AK3 mutations and suggestion of genetic heterogeneity. Diabetes 2004; 53(7):1876–1883.

    PubMed  CAS  Google Scholar 

  102. Cloutier J, Veillette A. Association of inhibitory tyrosine protein kinase p50csk with protein tyrosine phosphatase PEP in T cells and other hemopoietic cells. EMBO J 1996; 15(18):4909–4918.

    PubMed  CAS  Google Scholar 

  103. Bergman M, Mustelin T, Oetken C et al. The human p50csk tyrosine kinase phosphorylates p561ck at Tyr-505 and down regulates its catalytic activity. EMBO J 1992; 11(8):2919–2924.

    PubMed  CAS  Google Scholar 

  104. Bottini N. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nature Genet 2004; 36(4):337–338.

    PubMed  CAS  Google Scholar 

  105. Jawaheer D, Seldin M, Amos C et al. Screening the genome for rheumatoid arthritis susceptibility genes: A replication study and combined analysis of 512 multicase families. Arthritis Rheum 2003; 48(4):906–916.

    PubMed  CAS  Google Scholar 

  106. Gaffney P, Kearns G, Shark K et al. A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families. PNAS US 1998; 95(25):14875–14879.

    CAS  Google Scholar 

  107. Begovich A, Carlton V, Honigberg L et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004; 75(2):330–337.

    PubMed  CAS  Google Scholar 

  108. Kyogoku C, Langefeld C, Ortmann W et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet 2004; 75(3):504–507.

    PubMed  CAS  Google Scholar 

  109. Hasegawa K, Martin F, Huang G et al. PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science 2004; 303(5658):685–689.

    PubMed  CAS  Google Scholar 

  110. Smyth D, Cooper J, Collins J et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general au-toimmunity locus. Diabetes 2004; 53(11):3020–3023.

    PubMed  CAS  Google Scholar 

  111. Onengut-Gumuscu S, Ewens KG, Spielman RS et al. A functional polymorphism (1858C/T) in the PTPN22 gene is linked and associated with type I diabetes in multiplex families. Genes Immun 2004; 5(8):678–680.

    PubMed  CAS  Google Scholar 

  112. Velaga M, Wilson V, Jennings C et al. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves’ disease. J Clin Endocrinol Metab 2004; 89(11):5862–5865.

    PubMed  CAS  Google Scholar 

  113. Desterro J, Rodriguez M, Hay R. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 1998; 2(2):233–239.

    PubMed  CAS  Google Scholar 

  114. Karin M. How NF-kappaB is activated: The role of the IkappaB kinase (IKK) complex. Oncogene 1999; 18(49):6867–6874.

    PubMed  CAS  Google Scholar 

  115. Luo D, Buzzetti R, Rotter J et al. Confirmation of three susceptibility genes to insulin-dependent diabetes mellitus: IDDM4, IDDM5 and IDDM8. Hum Mol Gen 1996; 5(5):693–698.

    PubMed  CAS  Google Scholar 

  116. Guo D, Li M, Zhang Y et al. A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nature Genet 2004; 36(8):837–841.

    PubMed  CAS  Google Scholar 

  117. Owerbach D, Pina L, Gabbay K. A 212-kb region on chromosome 6q25 containing the TAB2 gene is associated with susceptibility to type 1 diabetes. Diabetes 2004; 53(7):1890–1893.

    PubMed  CAS  Google Scholar 

  118. Bohren K, Nadkarni V, Song J et al. A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem 2004; 279(26):27233–27238.

    PubMed  CAS  Google Scholar 

  119. Birk O, Elias D, Weiss A et al. NOD mouse diabetes: The ubiquitous mouse hsp60 is a beta-cell target antigen of autoimmune T cells. J Autoimmun 1996; 9(2):159–166.

    PubMed  CAS  Google Scholar 

  120. Jones D, Coulson A, Duff G. Sequence homologies between hsp60 and autoantigens. Immunol Tod 1993; 14(3):115–118.

    CAS  Google Scholar 

  121. Nguyen C, Limaye N, Wakeland E. Susceptibility genes in the pathogenesis of murine lupus. Arthritis Res 2002; 4(Suppl 3):S255–S263.

    PubMed  Google Scholar 

  122. Cordell H, Todd J, Bennett S et al. Two-locus maximum lod score analysis of a multifactorial trait: Joint consideration of IDDM2 and IDDM4 with IDDM1 in type 1 diabetes. Am J Hum Genet 1995; 57(4):920–934.

    PubMed  CAS  Google Scholar 

  123. Herbon N, Werner M, Braig C et al. High-resolution SNP scan of chromosome 6p21 in pooled samples from patients with complex diseases. Genomics 2003; 81(5):510–518.

    PubMed  CAS  Google Scholar 

  124. Morley M, Molony C, Weber T et al. Genetic analysis of genome-wide variation in human gene expression. Nature 2004; 430(7001):743–747.

    PubMed  CAS  Google Scholar 

  125. Pociot F, Karlsen AE, Pedersen CB et al. Novel analytical methods applied to type 1 diabetes genome scan data. Am J Hum Genet 2004; 74(4):647–660.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Bergholdt, R., McDermott, M.F., Pociot, F. (2006). Endocrine Diseases. In: Immunogenetics of Autoimmune Disease. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-39926-3_3

Download citation

Publish with us

Policies and ethics