Skip to main content

Centrosome Inheritance after Fertilization and Nuclear Transfer in Mammals

  • Chapter
Somatic Cell Nuclear Transfer

Part of the book series: Advances in Experimental Medicine and Biology ((volume 591))

Abstract

Centrosomes, the main microtubule organizing centers in a cell, are nonmembrane-bound semi-conservative organelles consisting of numerous centrosome proteins that typically surround a pair of perpendicularly oriented cylindrical centrioles. Centrosome matrix is therefore oftentimes referred to as pericentriolar material (PCM). Through their microtubule organizing functions centrosomes are also crucial for transport and distribution of cell organelles such as mitochondria and macromolecular complexes. Centrosomes undergo cell cycle-specific reorganizations and dynamics. Many of the centrosome-associated proteins are transient and cell cycle-specific while others, such as γ-tubulin, are permanently associated with centrosome structure. During gametogenesis, the spermatozoon retains its proximal centriole while losing most of the PCM, whereas the oocyte degenerates centrioles while retaining centrosomal proteins. In most mammals including humans, the spermatozoon contributes the proximal centriole during fertilization. Biparental centrosome contributions to the zygote are typical for most species with some exceptions such as the mouse in which centrosomes are maternally inherited and centrioles are assembled de novo during the blastocyst stage. After nuclear transfer in reconstructed embryos, the donor cell centrosome complex is responsible for carrying out functions that are typically fulfilled by the sperm centrosome complex during normal fertilization, including spindle organization, cell cycle progression and development. In rodents, donor cell centrioles are degraded after nuclear transfer, and centrosomal proteins from both donor cell and recipient oocytes contribute to mitotic spindle assembly. However, questions remain about the faithful reprogramming of centrosomes in cloned mammals and its consequences for embryo development. The molecular dynamics of donor cell centrosomes in nuclear transfer eggs need further analysis. The fate and functions of centrosome components in nuclear transfer embryosare being investigated by using molecular imaging of centrosome proteins labeled with specific markers including, but not limited to, green fluorescent protein (GFP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kramer A, Lukas J, Bartek J. Checking out the centrosome. Cell Cycle 2004; 3(11):1390–1393.

    PubMed  CAS  Google Scholar 

  2. Wang Q, Hirohashi Y, Furuuchi K et al. The centrosome in normal and transformed cells. DNA Cell Biol 2004; 23:475–489.

    Article  PubMed  CAS  Google Scholar 

  3. Schatten H, Hueser CN, Chakrabarti A. From fertilization to cancer: The role of centrosomes in the union and separation of genomic material. Microsc Res Tech 2000; 49(5):420–427.

    Article  PubMed  CAS  Google Scholar 

  4. Varmark H. Functional roles of centrosome in spindle assembly and organization. J Cell Biochem 2004; 91:904–914.

    Article  PubMed  CAS  Google Scholar 

  5. Bornens M. Centrosome composition and microtubule anchoring mechanisms. Curr Opion Cell Biol 2002; 14:25–34.

    Article  CAS  Google Scholar 

  6. Jurczyk A, Gromley A, Redick S et al. Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assembly. J Cell Biol 2004; 166(5):637–643.

    Article  PubMed  CAS  Google Scholar 

  7. Zimmerman WC, Sillibourne J, Rosa J et al. Mitosis-specific anchoring of gamma tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol Biol Cell 2004; 15(8):3642–3657.

    Article  PubMed  CAS  Google Scholar 

  8. Zeng C. NuMA: A nuclear protein involved in mitotic centrosome function. Microsc Res Tech 2000; 49(5):467–477.

    Article  PubMed  CAS  Google Scholar 

  9. Meraldi P, Nigg EA. The centrosome cycle. FEBS Lett 2002; 521:9–13.

    Article  PubMed  CAS  Google Scholar 

  10. Khodjakov A, Cole RW, Oakley BR et al. Centrosome-independent mitotic spindle formation in vertebrates. Curr Biol 2002; 10:59–67.

    Article  Google Scholar 

  11. Manandhar G, Schatten H, Sutovsky P. Centrosome reduction during gametogenesis and its significance. Biol Reprod 2005; 72:2–13.

    Article  PubMed  CAS  Google Scholar 

  12. Manandhar G, Simerly C, Schatten G. Centrosome reduction during mammalian spermiogenesis. Curr Top Dev Biol 2000; 49:343–363.

    PubMed  CAS  Google Scholar 

  13. Schatten G. The centrosome and its mode of inheritance: The reduction of centrosome during gametogenesis and its restoration during fertilization. Dev Biol 1994; 165:299–335.

    Article  PubMed  CAS  Google Scholar 

  14. Manandhar G, Sutovsky P, Joshi HC et al. Centrosome reduction during mouse spermiogenesis. Dev Biol 1998; 203(2):424–434.

    Article  PubMed  CAS  Google Scholar 

  15. Manandhar G, Simerly C, Salisbury JL et al. Centriole and centrin degeneration during mouse spermiogenesis. Cell Motil Cytoskeleton 1999; 43(2):137–144.

    Article  PubMed  CAS  Google Scholar 

  16. Woolley DM, Fawcett DW. The degeneration and disappearance of the centrioles during the development of the rat spermatozoon. Anat Rec 1973; 177:289–301.

    Article  PubMed  CAS  Google Scholar 

  17. Manandhar G, Schatten G. Centrosome reduction during rhesus monkey spermiogenesis: Tubulin, centrin, and centriole degeneration. Mol Reprod Dev 2000; 56:502–511.

    Article  PubMed  CAS  Google Scholar 

  18. Manandhar G, Simerly C, Schatten G. Highly degenerated distal centrioles in rhesus and human spermatozoa. Hum Reprod 2000; 15(2):256–263.

    Article  PubMed  CAS  Google Scholar 

  19. Calarco PG. Centrosome precursors in the acentriolar mouse oocyte. Microsc Res Tech 2000; 49(5):428–434.

    Article  PubMed  CAS  Google Scholar 

  20. Calarco PG, Siebert M, Hubble R et al. Centrosomal development in early mouse embryos as defined by an autoantibody against periocentriolar material. Cell 1983; 35:621–629.

    Article  Google Scholar 

  21. Meng XQ, Fan HY, Zhong ZS et al. Localization of g-tubulin in mouse eggs during meiotic maturation, fertilization, and early embryonic development. J Reprod Dev 2004; 50(1):97–105.

    Article  PubMed  CAS  Google Scholar 

  22. Tang CJ, Hu HM, Tang TK. NuMA expression and function in mouse oocytes and early embryos. J Biomed Sci 2004; 11(3):370–376.

    Article  PubMed  CAS  Google Scholar 

  23. Lee J, Miyano T, Moor RM. Spindle formation and dynamics of gamma-tubulin and nuclear mitotic apparatus protein distribution during meiosis in pig and mouse oocytes. Biol Reprod 2000; 62(5):1184–1192.

    Article  PubMed  CAS  Google Scholar 

  24. Can A, Semiz O, Cinar O. Centrosome and microtubule dynamics during early stages of meiosis in mouse oocytes. Mol Hum Reprod 2003; 9(12):749–756.

    Article  PubMed  CAS  Google Scholar 

  25. Messinger SM, Albertini DF. Centrosome and microtubule dynamics during meiotic progression in the mouse oocyte. J Cell Sci 1991; 100 (Pt 2):289–298.

    PubMed  Google Scholar 

  26. Carabatsos MJ, Combelles CM, Messinger SM et al. Sorting and reorganization of centrosomes during oocyte maturation in the mouse. Microsc Res Tech 2000; 49(5):435–44.

    Article  PubMed  CAS  Google Scholar 

  27. Crozet N, Dahirel M, Chesne P. Centrosome inheritance in sheep zygotes: Centrioles are contributed by the sperm. Microsc Res Tech 2000; 49(5):445–450.

    Article  PubMed  CAS  Google Scholar 

  28. Sathananthan AH, Selvaraj K, Trounson A. Fine structure of human oogonia in the foetal ovary. Mol Cell Endocrinol 2000; 161(1–2):3–8.

    Article  PubMed  CAS  Google Scholar 

  29. Battaglia DE, Klein NA, Soules MR. Changes in centrosomal domains during meiotic maturation in the human oocyte. Mol Hum Reprod 1996; 2(11):845–851.

    Article  PubMed  CAS  Google Scholar 

  30. Sathananthan AH, Ratnasooriya WD, de Silva PK et al. Characterization of human gamete centrosomes for assisted reproduction. Ital J Anat Embryol 2001; 106(2 Supp1 2):61–73.

    PubMed  CAS  Google Scholar 

  31. Sutovsky P, Schatten G. Paternal contributions to the mammalian zygote: Fertilization after sperm-egg fusion. Int Rev Cytol 2000; 195:1–65.

    Article  PubMed  CAS  Google Scholar 

  32. Sathananthan AH, Ratnam SS, Ng SC et al. The sperm centriole: Its inheritance, replication and perpetuation in early human embryos. Hum Reprod 1996; 11(2):345–356.

    PubMed  CAS  Google Scholar 

  33. Palermo GD, Colombero LT, Rosenwaks Z. The human sperm centrosome is responsible for normal syngamy and early embryonic development. Rev Reprod 1997; 2(1):19–27.

    Article  PubMed  CAS  Google Scholar 

  34. Nakamura S, Terada Y, Horiuchi T et al. Analysis of the human sperm centrosomal function and the oocyte activation ability in a case of globozoospermia, by ICSI into bovine oocytes. Hum Reprod 2002; 17(11):2930–2934.

    Article  PubMed  CAS  Google Scholar 

  35. Nakamura S, Terada Y, Rawe VY et al. A trial to restore defective human sperm centrosomal function. Hum Reprod 2005; 20(7):1933–1937.

    Article  PubMed  Google Scholar 

  36. Simerly C, Zoran SS, Payne C et al. Biparental inheritance of gamma-tubulin during human fertilization: Molecular reconstitution of functional zygotic centrosomes in inseminated human oocytes and in cell-free extracts nucleated by human sperm. Mol Biol Cell 1999; 10(9):2955–2969.

    PubMed  CAS  Google Scholar 

  37. Hewitson L, Simerly CR, Schatten G. Fate of sperm components during assisted reproduction: Implications for infertility. Hum Fertil (Camb) 2002; 5(3):110–116.

    Article  Google Scholar 

  38. Crozet N. Behavior of the sperm centriole during sheep oocyte fertilization. Eur J Cell Biol 1990; 53(2):326–332.

    PubMed  CAS  Google Scholar 

  39. Szollosi D, Ozil JP. De novo formation of centrioles in parthenogenetically activated, diploidized rabbit embryos. Biol Cell 72(1–2):61–66.

    Google Scholar 

  40. Shin MR, Kim NH. Maternal gamma (gamma)-tubulin is involved in microtubule reorganization during bovine fertilization and parthenogenesis. Mol Reprod Dev 2003; 64(4):438–445.

    Article  PubMed  CAS  Google Scholar 

  41. Sathananthan AH, Tatham B, Dharmawardena V et al. Inheritance of sperm centrioles and centrosomes in bovine embryos. Arch Androl 1997; 38(1):37–48.

    PubMed  CAS  Google Scholar 

  42. Kim NH, Simerly C, Funahashi H et al. Microtubule organization in porcine oocytes during fertilization and parthenogenesis. Biol Reprod 1996; 54(6):1397–1404.

    Article  PubMed  CAS  Google Scholar 

  43. Tremoleda JL, Van Haeften T, Stout TA et al. Cytoskeleton and chromatin reorganization in horse oocytes following intracytoplasmic sperm injection: Patterns associated with normal and defective fertilization. Biol Reprod 2003; 69(1):186–194.

    Article  PubMed  CAS  Google Scholar 

  44. Terada Y, Simerly CR, Hewitson L et al. Sperm aster formation and pronuclear decondensation during rabbit fertilization and development of a functional assay for human sperm. Biol Reprod 2000; 62(3):557–563.

    Article  PubMed  CAS  Google Scholar 

  45. Calarco-Gillam PD, Siebert MC, Hubble R et al. Centrosome development in early mouse embryos as defined by an autoantibody against pericentriolar material. Cell 1983; 35(3 Pt 2):621–629.

    Article  PubMed  CAS  Google Scholar 

  46. Abumuslimov SS, Nadezhdina ES, Chentsov IS. An electron microscopic study of centriole and centrosome morphogenesis in the early development of the mouse. Tsitologiia 1994; 36(11):1054–1061.

    PubMed  CAS  Google Scholar 

  47. Schatten H, Schatten G, Mazia D et al. Behavior of centrosomes during fertilization and cell division in mouse oocytes and in sea urchin eggs. Proc Natl Acad Sci USA 1986; 83(1):105–109.

    Article  PubMed  CAS  Google Scholar 

  48. Schatten G, Simerly C, Schatten H. Maternal inheritance of centrosomes in mammals? Studies on parthenogenesis and polyspermy in mice. Proc Nad Acad Sci USA 1991; 88(15):6785–6789.

    Article  CAS  Google Scholar 

  49. Palacios MJ, Joshi HC, Simerly C et al. g-tubulin reorganization during mouse fertilization and early development. J Cell Sci 1993; 104(Pt 2):383–289.

    PubMed  CAS  Google Scholar 

  50. Schatten H, Prather RS, Sun QY. The significance of mitochondria for embryo development in cloned farm animals. Mitochondrion 2005; 5 (Issue 5):303–321.

    Article  PubMed  CAS  Google Scholar 

  51. Simerly C, Navara CS, Hyun SH et al. Embryogenesis and blastocyst development after somatic cell nuclear transfer in nonhuman primates: Overcoming defects caused by meiotic spindle extraction. Dev Biol 2004; 276(2):237–252.

    Article  PubMed  CAS  Google Scholar 

  52. Navara CS, First N, Schatten G et al. Microtubule organization in the cow during fertilization, polyspermy, parthenogenesis, and nuclear transfer: The role of the sperm aster. Dev Biol 1994; 162(1):29–40.

    Article  PubMed  CAS  Google Scholar 

  53. Ruddock NT, Machaty Z, Milanick M et al. Mechanism of intracellular pH increase during parthenogenetic activation of in vitro matured porcine oocytes. Biol Reprod 2000a; 63:488–492.

    Article  PubMed  CAS  Google Scholar 

  54. Ruddock NT, Machaty Z, Prather RS. Intracellular pH increase accompanies parthenogenetic activation of porcine, bovine and murine oocytes. Reprod Fertil Dev 2000b; 12:201–207.

    Article  PubMed  CAS  Google Scholar 

  55. Schatten H, Walter M, Biessmann H et al. Activation of maternal centrosomes in unfertilized sea urchin eggs. Cell Motil Cytoskel 1992; 23:61–70.

    Article  CAS  Google Scholar 

  56. Saredi A, Howard, Compton DA. Phosphorylation regulates the assembly of NuMA in a mammalian mitotic extract. J Cell Sci 1997; 110:1287–1297.

    PubMed  CAS  Google Scholar 

  57. Merdes A, Cleveland DA. The role of NuMA in the interphase nucleus. J Cell Sci 1998; 111:71–9.

    PubMed  CAS  Google Scholar 

  58. Gehmlich K, Haren L, Merdes A. Cyclin B degradation leads to NuMA release from dynein/dynactin and from spindle poles. EMBO Rep 2004; 5:97–103.

    Article  PubMed  CAS  Google Scholar 

  59. Shin MR, Park SW, Shim H et al. Nuclear and microtubule reorganization in nuclear-transferred bovine embryos. Mol Reprod Dev 2002; 62(1):74–82.

    Article  PubMed  CAS  Google Scholar 

  60. Yin XJ, Cho SK, Park MR et al. Nuclear remodelling and the developmental potential of nuclear transferred porcine oocytes under delayed-activated conditions. Zygote 2003; 11(2):167–174.

    Article  PubMed  CAS  Google Scholar 

  61. Sun QY, Schatten H. Multiple roles of NuMA in vertebrate cells: Review of an intriguing multifunctional protein. Frontiers in Bioscience 2006; 11:1137–1146.

    Article  PubMed  CAS  Google Scholar 

  62. Zhong ZS, Zhang G, Meng XQ et al. Function of donor cell centrosome in intraspecies and interspecies nuclear transfer embryos. Exp Cell Res 2005; 306(1):35–46.

    Article  PubMed  CAS  Google Scholar 

  63. Liu ZH, Schatten H, Hao YH et al. The nuclear mitotic apparatus (NuMA) protein is contributed by the donor cell nucleus in cloned porcine embryos. Front Biosci 2006; 11:1945–1957.

    Article  PubMed  CAS  Google Scholar 

  64. Simerly C, Dominko T, Navara CS. Molecular correlates of primate nuclear transfer failures. Science 2003; 300(5617):297.

    Article  PubMed  Google Scholar 

  65. Meng L, Ely JJ, Stouffer RL et al. Rhesus monkeys produced by nuclear transfer. Biol Reprod 1997; 454–459.

    Google Scholar 

  66. Wolf DP. Assisted reproductive technologies in rhesus macaques. Reprod Biol Endocrinol 2004; 2:37.

    Article  PubMed  Google Scholar 

  67. Schramm RD, Paprocki AM. Strategiesfor the production of genetically identical monkeys by embryo splitting. Reprod Biol Endocrinol 2004; 2:38.

    Article  PubMed  CAS  Google Scholar 

  68. Salisbury JL. Centrin, centrosomes, and mitotic spindle poles. Curr Opin Cell Biol 1995; 7:39–45.

    Article  PubMed  CAS  Google Scholar 

  69. Manandhar G, Feng D, Yi YJ et al. Centrosomal protein centrin is not detectable during early preimplantation development but reappears during late blastocyst stage in porcine embryos. Reproduction 2006; in press.

    Google Scholar 

  70. Hiendleder S. Mitochondrial DNA inheritance after SCNT. In: Sutovsky P, ed. Somatic cell nuclear transfer. Georgetown: Landes Bioscience, New York: Springer Science+Business Media, 2006:8.

    Google Scholar 

  71. Delattre M, Gonczy P. The arithmetic of centrosome biogenesis. J Cell Sci 2004; 117 (Pt 9):1619–1930.

    Article  PubMed  CAS  Google Scholar 

  72. Higginbotham H, Bielas S, Tanaka T et al. Transgenic mouse line with green-fluorescent protein-labeled Centrin 2 allows visualization of the centrosome in living cells. Transgenic Res 2004; 13(2):155–164.

    Article  PubMed  CAS  Google Scholar 

  73. D’Assoro AB, Stivala F, Barrett S. GFP-centrin as a marker for centriole dynamics in the human breast cancer cell line MCF-7. Ital J Anat Embryol 2001; 106(2 Suppl 1):103–110.

    PubMed  CAS  Google Scholar 

  74. Danowski BA, Khodjakov A, Wadsworth P. Centrosome behavior in motile HGF-treated PtK2 cells expressing GFP-g tubulin. Cell Motil Cytoskeleton 50(2):59–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Sun, QY., Schatten, H. (2007). Centrosome Inheritance after Fertilization and Nuclear Transfer in Mammals. In: Sutovsky, P. (eds) Somatic Cell Nuclear Transfer. Advances in Experimental Medicine and Biology, vol 591. Springer, New York, NY. https://doi.org/10.1007/978-0-387-37754-4_4

Download citation

Publish with us

Policies and ethics