Skip to main content

Prognostic and Predictive Markers in Radiation Therapy: Focus on Prostate Cancer

  • Chapter
Radiation Oncology Advances

Part of the book series: Cancer Treatment and Research ((CTAR,volume 139))

  • 1107 Accesses

Biomarkers are molecular characteristics that provide clinically useful information in addition to that currently available via standard clinical and pathological testing. Continued development of molecular techniques has aided the discovery of new potential biomarkers for cancer and it is hoped that these will develop into tests useful in diagnosing as well as in defining prognosis and prognostic markers and predicting response to specific therapies, so-called predictive markers. Perhaps, even more importantly, the identification of predictive biomarkers may serve to identify molecular pathways of treatment resistance that might be selectively targeted or, when that is not possible, might be circumvented by choosing an alternative form of treatment with nonoverlapping modes of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fuks Z, Leibel SA, Wallner KE, et al. The effect of local control on metastatic dissemination in carcinoma of the prostate: long-term results in patients treated with 125I implantation. Int J Radiat Oncol Biol Phys 1991; 21(3):537–547.

    CAS  PubMed  Google Scholar 

  2. Bolla M, Gonzalez D, Warde P, et al. Improved survival in patients with locally advanced prostate cancer treated with radiotherapy and goserelin. N Engl J Med 1997; 337(5):295–300.

    Article  CAS  PubMed  Google Scholar 

  3. Hanks GE, Lee WR, Hanlon AL, et al. Conformal technique dose escalation for prostate cancer: biochemical evidence of improved cancer control with higher doses in patients with pretreatment prostate-specific antigen > or = 10 NG/ML [see comments]. Int J Radiat Oncol Biol Phys 1996; 35(5):861–868.

    CAS  PubMed  Google Scholar 

  4. Zelefsky MJ, Leibel SA, Gaudin PB, et al. Dose escalation with three-dimensional conformal radiation therapy affects the outcome in prostate cancer [see comments]. Int J Radiat Oncol Biol Phys 1998; 41(3):491–500.

    Article  CAS  PubMed  Google Scholar 

  5. Roach M 3rd, Meehan S, Kroll S, et al. Radiotherapy for high grade clinically localized adenocarcinoma of the prostate [see comments]. J Urol 1996; 156(5):1719–1723.

    Article  PubMed  Google Scholar 

  6. Vicini FA, Kestin LL, Martinez AA. The importance of adequate follow-up in defining treatment success after external beam irradiation for prostate cancer. Int J Radiat Oncol Biol Phys 1999; 45(3):553–561.

    CAS  PubMed  Google Scholar 

  7. Pollack A, Zagars GK, Starkschall G, et al. Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 2002; 53(5):1097–1105.

    Google Scholar 

  8. Betensky RA, Louis DN, Cairncross JG. Influence of unrecognized molecular heterogeneity on randomized clinical trials. J Clin Oncol 2002; 20(10):2495–2499.

    Article  PubMed  Google Scholar 

  9. Henshall SM, Afar DE, Hiller J, et al. Survival analysis of genome-wide gene expression profiles of prostate cancers identifies new prognostic targets of disease relapse. Cancer Res 2003; 63(14):4196–4203.

    CAS  PubMed  Google Scholar 

  10. Chiarugi V, Magnelli L, Cinelli M. Role of p53 mutations in the radiosensitivity status of tumor cells. Tumori 1998; 84(5):517–520.

    CAS  PubMed  Google Scholar 

  11. Meyn MS. Ataxia-telangiectasia and cellular responses to DNA damage. Cancer Res 1995; 55(24):5991–6001.

    CAS  PubMed  Google Scholar 

  12. Meyn RE, Stephens LC, Mason KA, Medina D. Radiation-induced apoptosis in normal and pre-neoplastic mammary glands in vivo: significance of gland differentiation and p53 status. Int J Cancer 1996; 65(4):466–472.

    Article  CAS  PubMed  Google Scholar 

  13. Sakakura C, Sweeney EA, Shirahama T, et al. Overexpression of bax sensitizes human breast cancer MCF-7 cells to radiation-induced apoptosis. Int J Cancer 1996; 67(1):101–105.

    Article  CAS  PubMed  Google Scholar 

  14. Huang SM, Bock JM, Harari PM. Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck [In Process Citation]. Cancer Res 1999; 59(8):1935–1940.

    CAS  PubMed  Google Scholar 

  15. Nogueira CP, Dolan RW, Gooey J, et al. Inactivation of p53 and amplification of cyclin D1 correlate with clinical outcome in head and neck cancer. Laryngoscope 1998; 108(3):345–350.

    Article  CAS  PubMed  Google Scholar 

  16. Raybaud-Diogene H, Fortin A, Morency R, Roy J, Monteil RA, Tetu B. Markers of radioresistance in squamous cell carcinomas of the head and neck: a clinicopathologic and immunohistochemical study. J Clin Oncol 1997; 15(3):1030–1038.

    CAS  PubMed  Google Scholar 

  17. Servomaa K, Kiuru A, Grenman R, Pekkola-Heino K, Pulkkinen JO, Rytomaa T. p53 mutations associated with increased sensitivity to ionizing radiation in human head and neck cancer cell lines. Cell Prolif 1996; 29(5):219–230.

    Article  CAS  PubMed  Google Scholar 

  18. Sheridan MT, O’Dwyer T, Seymour CB, Mothersill CE. Potential indicators of radiosensitivity in squamous cell carcinoma of the head and neck. Radiat Oncol Investig 1997; 5(4):180–186.

    Article  CAS  PubMed  Google Scholar 

  19. Biard DS, Martin M, Rhun YL, et al. Concomitant p53 gene mutation and increased radiosensitivity in rat lung embryo epithelial cells during neoplastic development. Cancer Res 1994; 54(13):3361–3364.

    CAS  PubMed  Google Scholar 

  20. Sirzen F, Zhivotovsky B, Nilsson A, Bergh J, Lewensohn R. Spontaneous and radiation-induced apoptosis in lung carcinoma cells with different intrinsic radiosensitivities. Anticancer Res 1998; 18(2A):695–699.

    Google Scholar 

  21. Ahmed MM, Sells SF, Venkatasubbarao K, et al. Ionizing radiation-inducible apoptosis in the absence of p53 linked to transcription factor EGR-1. J Biol Chem 1997; 272(52):33056–33061.

    Article  CAS  PubMed  Google Scholar 

  22. Colletier PJ, Ashoori F, Cowen D, et al. Adenoviral-mediated p53 transgene expression sensitizes both wild-type and null p53 prostate cancer cells in vitro to radiation. Int J Radiat Oncol Biol Phys 2000; 48(5):1507–1512.

    CAS  PubMed  Google Scholar 

  23. Sasaki R, Shirakawa T, Zhang ZJ, et al. Additional gene therapy with Ad5CMV-p53 enhanced the efficacy of radiotherapy in human prostate cancer cells. Int J Radiat Oncol Biol Phys 2001; 51(5):1336–1345.

    CAS  PubMed  Google Scholar 

  24. Cuddihy AR, Bristow RG. The p53 protein family and radiation sensitivity: Yes or no? Cancer Metastasis Rev 2004; 23(3–4):237–257.

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, Yu D, Agrawal S, Zhang R. Experimental therapy of human prostate cancer by inhibiting MDM2 expression with novel mixed-backbone antisense oligonucleotides: in vitro and in vivo activities and mechanisms. Prostate 2003; 54(3):194–205.

    Article  CAS  PubMed  Google Scholar 

  26. Mu Z, Hachem P, Agrawal S, Pollack A. Antisense MDM2 sensitizes prostate cancer cells to androgen deprivation, radiation, and the combination. Int J Radiat Oncol Biol Phys 2004; 58(2):336–343.

    CAS  PubMed  Google Scholar 

  27. Zhang Z, Li M, Wang H, Agrawal S, Zhang R. Antisense therapy targeting MDM2 oncogene in prostate cancer: Effects on proliferation, apoptosis, multiple gene expression, and chemotherapy. Proc Natl Acad Sci USA 2003.

    Google Scholar 

  28. An J, Chervin AS, Nie A, Ducoff HS, Huang Z. Overcoming the radioresistance of prostate cancer cells with a novel Bcl-2 inhibitor. Oncogene 2006.

    Google Scholar 

  29. Mu Z, Hachem P, Pollack A. Antisense Bcl-2 sensitizes prostate cancer cells to radiation. Prostate 2005; 65(4):331–340.

    Article  CAS  PubMed  Google Scholar 

  30. Scott SL, Higdon R, Beckett L, et al. BCL2 antisense reduces prostate cancer cell survival following irradiation. Cancer Biother Radiopharm 2002; 17(6):647–656.

    Article  CAS  PubMed  Google Scholar 

  31. Kishi K, Petersen S, Petersen C, et al. Preferential enhancement of tumor radioresponse by a cyclooxygenase-2 inhibitor. Cancer Res 2000; 60(5):1326–1331.

    CAS  PubMed  Google Scholar 

  32. Dulic V, Kaufmann WK, Wilson SJ, et al. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 1994; 76(6):1013–1023.

    Article  CAS  PubMed  Google Scholar 

  33. Smith ML, Chen IT, Zhan Q, et al. Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 1994; 266(5189):1376–1380.

    Article  CAS  PubMed  Google Scholar 

  34. Momand J, Wu HH, Dasgupta G. MDM2–master regulator of the p53 tumor suppressor protein. Gene 2000; 242(1–2):15–29.

    Article  CAS  PubMed  Google Scholar 

  35. Siles E, Villalobos M, Valenzuela MT, et al. Relationship between p53 status and radiosensitivity in human tumour cell lines. Br J Cancer 1996; 73(5):581–588.

    CAS  PubMed  Google Scholar 

  36. Li CY, Nagasawa H, Dahlberg WK, Little JB. Diminished capacity for p53 in mediating a radiation-induced G1 arrest in established human tumor cell lines. Oncogene 1995; 11(9):1885–1892.

    CAS  PubMed  Google Scholar 

  37. Bourhis J, Bosq J, Wilson GD, et al. Correlation between p53 gene expression and tumor-cell proliferation in oropharyngeal cancer. Int J Cancer 1994; 57(4):458–462.

    Article  CAS  PubMed  Google Scholar 

  38. Burchardt M, Burchardt T, Shabsigh A, et al. Reduction of wild type p53 function confers a hormone resistant phenotype on LNCaP prostate cancer cells. Prostate 2001; 48(4):225–230.

    Article  CAS  PubMed  Google Scholar 

  39. Rovinski B, Benchimol S. Immortalization of rat embryo fibroblasts by the cellular p53 oncogene. Oncogene 1988; 2(5):445–452.

    CAS  PubMed  Google Scholar 

  40. Bruckheimer EM, Gjertsen BT, McDonnell TJ. Implications of cell death regulation in the pathogenesis and treatment of prostate cancer. Semin Oncol 1999; 26(4):382–398.

    Article  CAS  PubMed  Google Scholar 

  41. Chyle V, Pollack A, Czerniak B, et al. Apoptosis and downstaging after preoperative radiotherapy for muscle- invasive bladder cancer [see comments]. Int J Radiat Oncol Biol Phys 1996; 35(2):281–287.

    CAS  PubMed  Google Scholar 

  42. Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 1999; 399(6735):483–487.

    Article  CAS  PubMed  Google Scholar 

  43. Beham AW, Sarkiss M, Brisbay S, Tu SM, von Eschenbach AC, McDonnell TJ. Molecular correlates of bcl-2-enhanced growth following androgen-ablation in prostate carcinoma cells in vivo. Int J Mol Med 1998; 1(6):953–959.

    CAS  PubMed  Google Scholar 

  44. Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69(7):1237–1245.

    Article  CAS  PubMed  Google Scholar 

  45. Lianes P, Orlow I, Zhang ZF, et al. Altered patterns of MDM2 and TP53 expression in human bladder cancer. J Natl Cancer Inst 1994; 86(17):1325–1330.

    Article  CAS  PubMed  Google Scholar 

  46. Gorgoulis VG, Rassidakis GZ, Karameris AM, et al. Immunohistochemical and molecular evaluation of the mdm-2 gene product in bronchogenic carcinoma. Mod Pathol 1996;9(5):544–554.

    CAS  PubMed  Google Scholar 

  47. Leite KR, Franco MF, Srougi M, et al. Abnormal expression of MDM2 in prostate carcinoma. Mod Pathol 2001; 14(5):428–436.

    Article  CAS  PubMed  Google Scholar 

  48. Osman I, Drobnjak M, Fazzari M, Ferrara J, Scher HI, Cordon-Cardo C. Inactivation of the p53 pathway in prostate cancer: impact on tumor progression. Clin Cancer Res 1999; 5(8):2082–2088.

    CAS  PubMed  Google Scholar 

  49. Grunbaum U, Meye A, Bache M, et al. Transfection with mdm2-antisense or wtp53 results in radiosensitization and an increased apoptosis of a soft tissue sarcoma cell line. Anticancer Res 2001; 21(3B):2065–2071.

    Google Scholar 

  50. Agrawal S, Kandimalla ER, Yu D, et al. Potentiation of antitumor activity of irinotecan by chemically modified oligonucleotides. Int J Oncol 2001; 18(5):1061–1069.

    CAS  PubMed  Google Scholar 

  51. Ritter MA, Gilchrist KW, Voytovich M, Chappell RJ, Verhoven BM. The role of p53 in radiation therapy outcomes for favorable-to-intermediate-risk prostate cancer. Int J Radiat Oncol Biol Phys 2002; 53(3):574–580.

    CAS  PubMed  Google Scholar 

  52. Scherr DS, Vaughan ED Jr, Wei J, et al. BCL-2 and p53 expression in clinically localized prostate cancer predicts response to external beam radiotherapy. J Urol 1999; 162(1):12–16; discussion 6–7.

    Google Scholar 

  53. Cheng L, Sebo TJ, Cheville JC, et al. p53 protein overexpression is associated with increased cell proliferation in patients with locally recurrent prostate carcinoma after radiation therapy. Cancer 1999; 85(6):1293–1299.

    Article  CAS  PubMed  Google Scholar 

  54. Grignon DJ, Caplan R, Sarkar FH, et al. p53 status and prognosis of locally advanced prostatic adenocarcinoma: a study based on RTOG 8610. J Natl Cancer Inst 1997; 89(2):158–165.

    Article  CAS  PubMed  Google Scholar 

  55. Pollack A, Cowen D, Troncoso P, et al. Molecular markers of outcome after radiotherapy in patients with prostate carcinoma: Ki-67, bcl-2, bax, and bcl-x. Cancer 2003; 97(7):1630–1638.

    Article  PubMed  Google Scholar 

  56. Ritter MA. Unpublished. 2006.

    Google Scholar 

  57. Khor LY, Desilvio M, Al-Saleem T, et al. MDM2 as a predictor of prostate carcinoma outcome: an analysis of Radiation Therapy Oncology Group Protocol 8610. Cancer 2005; 104(5):962–967.

    Article  PubMed  Google Scholar 

  58. Lee LM, Pan CC, Cheng CJ, Chi CW, Liu TY. Expression of cyclooxygenase-2 in prostate adenocarcinoma and benign prostatic hyperplasia. Anticancer Res 2001; 21(2B):1291–1294.

    Google Scholar 

  59. Chakravarti A, Heydon K, Wu CL, et al. Loss of p16 expression is of prognostic significance in locally advanced prostate cancer: an analysis from the Radiation Therapy Oncology Group protocol 86–10. J Clin Oncol 2003; 21(17):3328–3334.

    Article  CAS  PubMed  Google Scholar 

  60. Calvo A, Gonzalez-Moreno O, Yoon CY, et al. Prostate cancer and the genomic revolution: Advances using microarray analyses. Mutat Res 2005; 576(1–2):66–79.

    CAS  PubMed  Google Scholar 

  61. Lapointe J, Li C, Higgins JP, et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 2004; 101(3):811–816.

    Article  CAS  PubMed  Google Scholar 

  62. Singh D, Febbo PG, Ross K, et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002; 1(2):203–209.

    Article  CAS  PubMed  Google Scholar 

  63. Paris PL, Weinberg V, Simko J, et al. Preliminary evaluation of prostate cancer metastatic risk biomarkers. Int J Biol Markers 2005; 20(3):141–145.

    CAS  PubMed  Google Scholar 

  64. Latil A, Bieche I, Chene L, et al. Gene expression profiling in clinically localized prostate cancer: a four-gene expression model predicts clinical behavior. Clin Cancer Res 2003; 9(15):5477–5485.

    CAS  PubMed  Google Scholar 

  65. Ornstein DK, Tyson DR. Proteomics for the identification of new prostate cancer biomarkers. Urol Oncol 2006; 24(3):231–236.

    CAS  PubMed  Google Scholar 

  66. Hilbe W, Gachter A, Duba HC, et al. Comparison of automated cellular imaging system and manual microscopy for immunohistochemically stained cryostat sections of lung cancer specimens applying p53, ki-67 and p120. Oncol Rep 2003; 10(1):15–20.

    PubMed  Google Scholar 

  67. Milanes-Yearsley M, Hammond ME, Pajak TF, et al. Tissue micro-array: a cost and time-effective method for correlative studies by regional and national cancer study groups. Mod Pathol 2002; 15(12):1366–1373.

    Article  PubMed  Google Scholar 

  68. Grossfeld GD, Olumi AF, Connolly JA, et al. Locally recurrent prostate tumors following either radiation therapy or radical prostatectomy have changes in Ki-67 labeling index, p53 and bcl- 2 immunoreactivity. J Urol 1998; 159(5):1437–1443.

    Article  CAS  PubMed  Google Scholar 

  69. Huang A, Gandour-Edwards R, Rosenthal SA, Siders DB, Deitch AD, White RW. p53 and bcl-2 immunohistochemical alterations in prostate cancer treated with radiation therapy. Urology 1998; 51(2):346–351.

    Article  CAS  PubMed  Google Scholar 

  70. Bylund A, Stattin P, Widmark A, Bergh A. Predictive value of bcl-2 immunoreactivity in prostate cancer patients treated with radiotherapy. Radiother Oncol 1998; 49(2):143–148.

    Article  CAS  PubMed  Google Scholar 

  71. Khor LY, Desilvio M, Li R, et al. Bcl-2 and bax expression and prostate cancer outcome in men treated with radiotherapy in Radiation Therapy Oncology Group protocol 86–10. Int J Radiat Oncol Biol Phys 2006; 66(1):25–30.

    CAS  PubMed  Google Scholar 

  72. Rosser CJ, Reyes AO, Vakar-Lopez F, et al. Bcl-2 is significantly overexpressed in localized radio-recurrent prostate carcinoma, compared with localized radio-naive prostate carcinoma. Int J Radiat Oncol Biol Phys 2003; 56(1):1–6.

    CAS  PubMed  Google Scholar 

  73. Mackey TJ, Borkowski A, Amin P, Jacobs SC, Kyprianou N. bcl-2/bax ratio as a predictive marker for therapeutic response to radiotherapy in patients with prostate cancer. Urology 1998; 52(6):1085–1090.

    Article  CAS  PubMed  Google Scholar 

  74. Cowen D, Troncoso P, Khoo VS, et al. Ki-67 staining is an independent correlate of biochemical failure in prostate cancer treated with radiotherapy. Clin Cancer Res 2002; 8(5):1148–1154.

    PubMed  Google Scholar 

  75. Pollack A, DeSilvio M, Khor LY, et al. Ki-67 staining is a strong predictor of distant metastasis and mortality for men with prostate cancer treated with radiotherapy plus androgen deprivation: Radiation Therapy Oncology Group Trial 92–02. J Clin Oncol 2004; 22(11):2133–2140.

    Article  CAS  PubMed  Google Scholar 

  76. Khor L-Y, Bae K, Pollack A, et al. Cox-2 Expression Predicts Prostate Cancer Outcome: An Analysis of RTOG 92–02. Int J Radiat Oncol Biol Phys 2006; 66(3):S202.

    Google Scholar 

  77. Bubendorf L, Sauter G, Moch H, et al. Ki67 labelling index: an independent predictor of progression in prostate cancer treated by radical prostatectomy. J Pathol 1996; 178(4):437–441.

    Article  CAS  PubMed  Google Scholar 

  78. Borre M, Bentzen SM, Nerstrom B, Overgaard J. Tumor cell proliferation and survival in patients with prostate cancer followed expectantly. J Urol 1998; 159(5):1609–1614.

    Article  CAS  PubMed  Google Scholar 

  79. Bubendorf L, Tapia C, Gasser TC, et al. Ki67 labeling index in core needle biopsies independently predicts tumor-specific survival in prostate cancer. Hum Pathol 1998; 29(9):949–954.

    Article  CAS  PubMed  Google Scholar 

  80. Movsas B, Chapman JD, Hanlon AL, et al. Hypoxic prostate/muscle pO2 ratio predicts for biochemical failure in patients with prostate cancer: preliminary findings. Urology 2002; 60(4):634–639.

    Article  PubMed  Google Scholar 

  81. Carnell DM, Smith RE, Daley FM, Saunders MI, Bentzen SM, Hoskin PJ. An immunohistochemical assessment of hypoxia in prostate carcinoma using pimonidazole: implications for radioresistance. Int J Radiat Oncol Biol Phys 2006; 65(1):91–99.

    CAS  PubMed  Google Scholar 

  82. Nordsmark M, Bentzen SM, Rudat V, et al. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 2005; 77(1):18–24.

    Google Scholar 

  83. Meng AX, Jalali F, Cuddihy A, et al. Hypoxia down-regulates DNA double strand break repair gene expression in prostate cancer cells. Radiother Oncol 2005; 76(2):168–176.

    Article  CAS  PubMed  Google Scholar 

  84. Rischin D, Hicks RJ, Fisher R, et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol 2006; 24(13):2098–2104.

    Google Scholar 

  85. Chao KS, Bosch WR, Mutic S, et al. A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 2001; 49(4):1171–1182.

    Article  CAS  PubMed  Google Scholar 

  86. Koukourakis MI, Bentzen SM, Giatromanolaki A, et al. Endogenous markers of two separate hypoxia response pathways (hypoxia inducible factor 2 alpha and carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer patients recruited in the CHART randomized trial. J Clin Oncol 2006; 24(5):727–735.

    Article  CAS  PubMed  Google Scholar 

  87. Bache M, Reddemann R, Said HM, et al. Immunohistochemical detection of osteopontin in advanced head-and-neck cancer: prognostic role and correlation with oxygen electrode measurements, hypoxia-inducible-factor-1alpha-related markers, and hemoglobin levels. Int J Radiat Oncol Biol Phys 2006; 66(5):1481–1487.

    CAS  PubMed  Google Scholar 

  88. Overgaard J, Eriksen JG, Nordsmark M, Alsner J, Horsman MR. Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser nimorazole in radiotherapy of head and neck cancer: results from the DAHANCA 5 randomised double-blind placebo-controlled trial. Lancet Oncol 2005; 6(10):757–764.

    Article  CAS  PubMed  Google Scholar 

  89. Petrik D, Lavori PW, Cao H, et al. Plasma osteopontin is an independent prognostic marker for head and neck cancers. J Clin Oncol 2006; 24(33):5291–5297.

    Article  CAS  PubMed  Google Scholar 

  90. Nishizaki M, Meyn RE, Levy LB, et al. Synergistic inhibition of human lung cancer cell growth by adenovirus-mediated wild-type p53 gene transfer in combination with docetaxel and radiation therapeutics in vitro and in vivo. Clin Cancer Res 2001; 7(9):2887–2897.

    CAS  PubMed  Google Scholar 

  91. Hamid O, Varterasian ML, Wadler S, et al. Phase II trial of intravenous CI-1042 in patients with metastatic colorectal cancer. J Clin Oncol 2003; 21(8):1498–1504.

    Article  CAS  PubMed  Google Scholar 

  92. Weinstein JN, Myers TG, O’Connor PM, et al. An information-intensive approach to the molecular pharmacology of cancer. Science 1997; 275(5298):343–349.

    Article  CAS  PubMed  Google Scholar 

  93. Wiman KG. Strategies for therapeutic targeting of the p53 pathway in cancer. Cell Death Differ 2006; 13(6):921–926.

    Article  CAS  PubMed  Google Scholar 

  94. Komarov PG, Komarova EA, Kondratov RV, et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 1999; 285(5434):1733–1737.

    Article  CAS  PubMed  Google Scholar 

  95. Morris MJ, Tong WP, Cordon-Cardo C, et al. Phase I trial of BCL-2 antisense oligonucleotide (G3139) administered by continuous intravenous infusion in patients with advanced cancer. Clin Cancer Res 2002; 8(3):679–683.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ritter, M.A. (2008). Prognostic and Predictive Markers in Radiation Therapy: Focus on Prostate Cancer. In: Bentzen, S.M., Harari, P.M., Tomé, W.A., Mehta, M.P. (eds) Radiation Oncology Advances. Cancer Treatment and Research, vol 139. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36744-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-36744-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-36743-9

  • Online ISBN: 978-0-387-36744-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics