Skip to main content

Abstract

For ages, humans have developed technologies to exploit living organisms and their metabolism to produce food (e.g., bread, cheese and wine). Modern biotechnology implies the industrial use of scientific knowledge of cellular and molecular processes to make or modify products, to improve plants and animals, or to develop microorganism for specific uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davies WP. An historical perspective from the Green Revolution to the gene revolution. Nutr Rev 2003; 61(6 Pt 2):124–134.

    Article  Google Scholar 

  2. Braun R. People’s concerns about biotechnology: Some problems and some solutions. J Biotechnol 2002; 98(1):3–8.

    Article  PubMed  CAS  Google Scholar 

  3. Gaskell G, Allum N, Bauer M et al. Biotechnology and the European public. Nature Biotechnology 2000; 18:935–938.

    Article  PubMed  CAS  Google Scholar 

  4. Sergeyeva TA, Piletsky SA, Brovko AA et al. Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection. Anal Chimica Acta 1999; 392:105–111.

    Article  CAS  Google Scholar 

  5. Belkin S. Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 2003; 6(3):206–212.

    Article  PubMed  CAS  Google Scholar 

  6. Koblizek M, Masojidek J, Komenda J et al. A sensitive photosystem II based biosensor for detection of a class of herbicides. Biotechnol Bioengineering 1998; 60:664–669.

    Article  CAS  Google Scholar 

  7. Koblizek M, Maly J, Masojíek J et al. A Sensitive photosystem II-based biosensor for detection of a class of herbicides. Screen printed electrodes as transduction devices. Biotechnol Bioeng 2002; 78:110–116.

    Article  PubMed  CAS  Google Scholar 

  8. Giardi MT, Koblizek M, Masojidek J. Photosystem II-based biosensors for the detection of pollutants. Biosens Bioelectron 2001; 16:1027–1033.

    Article  PubMed  CAS  Google Scholar 

  9. Vedrine C, Leclerc JC, Durrieu C et al. Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens Bioelectron 2003; 18(4):457–463.

    Article  PubMed  CAS  Google Scholar 

  10. Cornelis P. Expressing genes in different Escherichia coli compartments. Curr Opin Biotechnol 2000; 11:450–454.

    Article  PubMed  CAS  Google Scholar 

  11. Richins RD, Kaneva I, Mulchandani A et al. Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol 1997; 15(10):984–987.

    Article  PubMed  CAS  Google Scholar 

  12. Lee YS, Choi JH, Xu Z. Microbial cell-surface display. Trends Biotech 2003; 21(1):45–52.

    Article  CAS  Google Scholar 

  13. Van der Vaart JM, te Biesebeke R, Chapman JW et al. Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins. Appl Environ Microbiol 1997; 63:615–620.

    PubMed  Google Scholar 

  14. Shimazu M, Mulchandoni A, Chen W. Cell surface display of organophosphours hydrolase using ice nucleation protein. Biotechnol Prog 2001; 17:76–80.

    Article  PubMed  CAS  Google Scholar 

  15. Mulchandani P, Chen W, Mulchandani A et al. Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase. Biosens Bioelectron 2001; 16(7–8):433–437.

    Article  PubMed  CAS  Google Scholar 

  16. Sandkvist M, Bagdasariant M. Secretion of recombinant proteins by Gram-negative bacteria. Curr Opin Biotechnol 1996; 7:505–511.

    Article  PubMed  CAS  Google Scholar 

  17. Thanassi DG, Hultgren SJ. Multiple pathways allow protein secretion across the bacterial outer membrane. Curr Opin Cell Biol 2000; 12(4):420–430.

    Article  PubMed  CAS  Google Scholar 

  18. Gumpert J, Hoischen C. Use of cell wall-less bacteria (L-forms) for efficient expression and secretion of heterologous gene products. Curr Opin Biotechnol 1998; 9(5):506–509.

    Article  PubMed  CAS  Google Scholar 

  19. Georgiou G, Valaxt P. Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotechnol 1996; 7:190–197.

    Article  PubMed  CAS  Google Scholar 

  20. Baneyx F. Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 1999; 10:411–421.

    Article  PubMed  CAS  Google Scholar 

  21. Mar Carriò M, Villaverde A. Role of molecular chaperones in inclusion body formation. FEBS Letters 2003; 537:215–221.

    Article  PubMed  CAS  Google Scholar 

  22. Ostermeier M, De Sutter K, Georgiou G. Eukaryotic protein disulfide isomerase complements Escherichia coli dsbA mutants and increases the yield of a heterologous secreted protein with disulfide bonds. J Biol Chem 1996; 271(18):10616–10622.

    Article  PubMed  CAS  Google Scholar 

  23. Meerman HJ, Georgiou G. Construction and characterization of a set of E. coli strains deficient in all known loci affecting the proteolytic stability of secreted recombinant proteins. Biotechnology 1994; 12(11):1107–1110.

    Article  PubMed  CAS  Google Scholar 

  24. Park SJ, Georgiou G, Lee SY. Secretory production of recombinant protein by a high cell density culture of a protease negative mutant Escherichia coli strain. Biotechnol Prog 1999; 15(2):164–167.

    Article  PubMed  CAS  Google Scholar 

  25. Kandilogiannaki M, Koutsoudakis G, Zafiropoulos A et al. Expression of a recombinant human anti-MUC1 scFv fragment in protease-deficient Escherichia coli mutants. Int J Mol Med 2001; 7(6):659–664.

    PubMed  CAS  Google Scholar 

  26. Jonasson P, Liljeqvist S, Nygren PA et al. Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechnol Appl Biochem 2002; 35:91–105.

    Article  PubMed  CAS  Google Scholar 

  27. Fischer M, Ittah A, Liefer I et al. Expression and reconstitution of biologically active human acetylcholinesterase from Escherichia coli. Cell Mol Neurobiol 1993; 13(1):25–38.

    Article  PubMed  CAS  Google Scholar 

  28. Lilie H, Schwarz E, Rudolph R. Advances in refolding of proteins produced in E. coli. Curr Opin Biotechnol 1998; 9:497–501.

    Article  PubMed  CAS  Google Scholar 

  29. Houry WA. Chaperone-assisted protein folding in the cell cytoplasm. Curr Protein Pept Sci 2001; 2(3):227–244.

    Article  PubMed  CAS  Google Scholar 

  30. Hoskins JR, Sharma S, Sathyanarayana BK et al. Clp ATPases and their role in protein unfolding and degradation. Adv Protein Chem 2001; 59:413–429.

    Article  PubMed  CAS  Google Scholar 

  31. Weber F, Keppel F, Georgopoulos G et al. The oligomeric structure of GroEL/GroES is required for biologically significant chaperonin function in protein folding. Nat Struct Biol 1998; 5(11):977–985.

    Article  PubMed  CAS  Google Scholar 

  32. Dionisi HM, Checa SK, Krapp AR et al. Cooperation of the DnaK and GroE chaperone systems in the folding pathway of plant ferredoxin-NADP+ reductase expressed in Escherichia coli. Eur J Biochem 1998; 251(3):724–728.

    Article  PubMed  CAS  Google Scholar 

  33. Lee DH, Kim MD, Lee WH et al. Consortium of fold-catalyzing proteins increases soluble expression of cyclohexanone monooxygenase in recombinant Escherichia coli. Appl Microbiol Biotechnol published online 2003.

    Google Scholar 

  34. Kapust RB, Waugh DS. Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 1999; 8(8):1668–1674.

    PubMed  CAS  Google Scholar 

  35. Bach H, Mazor Y, Shaky S et al. Escherichia coli maltose-binding protein as a molecular chaperone for recombinant intracellular cytoplasmic single-chain antibodies. J Mol Biol 2001; 312(1):79–93.

    Article  PubMed  CAS  Google Scholar 

  36. Middelberg PJA. Preparative protein refolding. Trends Biotechnol 2002; 20(10):437–443.

    Article  PubMed  CAS  Google Scholar 

  37. Tsumoto K, Ejima D, Kumagai I et al. Practical considerations in refolding proteins from inclusion bodies. Protein Expression Purification 2003; 28:1–8.

    Article  PubMed  CAS  Google Scholar 

  38. Zahn K. Overexpression of an mRNA dependent on rare codons inhibits protein synthesis and cell growth. J Bacteriol 1996; 178:2926–2933.

    PubMed  CAS  Google Scholar 

  39. McNulty DE, Claffee BA, Huddleston MJ et al. Mistranslational errors associated with the rare arginine codon CGG in Escherichia coli. Protein Expr Purif 2003; 27(2):365–374.

    Article  PubMed  CAS  Google Scholar 

  40. Cereghino GP, Cregg JM. Applications of yeast in biotechnology: Protein production and genetic analysis. Curr Opin Biotechnol 1999; 10:422–427.

    Article  PubMed  CAS  Google Scholar 

  41. Rai M, Padh H. Expression systems for production of heterologous proteins. Current science 2001; 80(9):1121–1128.

    CAS  Google Scholar 

  42. Maggio ET, Ramnarayan K. Recent developments in computational proteomics. Drug Discov Today 2001; 6(19):996–1004.

    Article  PubMed  CAS  Google Scholar 

  43. Moult J. Predicting protein three-dimensional structure. Curr Opin Biotechnol 1999; 10(6):583–588.

    Article  PubMed  CAS  Google Scholar 

  44. Xu D, Xu Y, Uberbacher EC. Computational tools for protein modeling. Curr Protein Pept Sci 2000; 1(1):1–21.

    Article  PubMed  CAS  Google Scholar 

  45. Szklarz GD, Halpert JR. Use of homology modeling in conjunction with site-directed mutagenesis for analysis of structurefunction relationship of mammalian cytocromes P450. Life science 1997; 61(26):2507–2520.

    Article  CAS  Google Scholar 

  46. Fiser A, Sanchez R, Melo F et al. Comparative protein structure modeling. Computational Biochemistry and Biophysics. New York: Marcel Dekker, 2001:275–312.

    Google Scholar 

  47. Forster MJ. Molecular modelling in structural biology. Micron 2002; 33:365–384.

    Article  PubMed  CAS  Google Scholar 

  48. Prasad JC, Comeau SR, Vajda S et al. Consensus alignment for reliable framework prediction in homology modeling. Bioinformatics 2003; 19(13):1682–1691.

    Article  PubMed  CAS  Google Scholar 

  49. Sali A, Overington JP. Derivation of rules for comparative protein modeling from a database of protein structure alignments. Protein Sci 1994; 3:1582–1596.

    PubMed  CAS  Google Scholar 

  50. Murphy RB, Philipp DM, Friesner RA. A Mixed quantum mechanics/molecular mechanics (QM/MM) method for large-scale modeling of chemistry in protein environments. J Computational Chem 2000; 21(16):1442–1457.

    Article  CAS  Google Scholar 

  51. Santini C, Tidu V, Tognon G et al. Three-dimensional structure of the higher-plant photosystem II reaction center and evidence for its dimeric organization in vivo. Eur J Biochem 1994; 221(1):307–315.

    Article  PubMed  CAS  Google Scholar 

  52. Svensson B, Etchebest C, Tuffery P et al. A model for the photosystem II reaction center core including the structure of the primary donor P680. Biochemistry 1996; 35(46):14486–14502.

    Article  PubMed  CAS  Google Scholar 

  53. Xiong J, Subramanian S, Govindjee. A knowledge-based three dimensional model of the Photosystem II reaction center of Chlamydomonas reinhardtii. Photosynth Res 1998; 56:229–254.

    Article  CAS  Google Scholar 

  54. Svensson B, Vass I, Cedergren E et al. Structure of donor side components in photosystem II predicted by computer modelling. EMBO J 1990; 9(7):2051–2059.

    PubMed  CAS  Google Scholar 

  55. Xiong J, Subramaniam S, Govindjee. Modeling of the D1:D2 proteins and cofactors of the photosystem II reaction center: Implications for herbicide and bicarbonate binding. Protein Sci 1996; 5:2054–2073.

    Article  PubMed  CAS  Google Scholar 

  56. Camacho CJ, Vajda S. Protein-protein associated kinetics and protein docking. Curr Opin Struct Biol 2002; 12(1):36–40.

    Article  PubMed  CAS  Google Scholar 

  57. Lovell SC, Davis IW, Arendall IIIrd WB et al. Structure validation by Calpha geometry: Phi, psi and Cbeta deviation. Proteins 2003; 50(3):437–450.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Testone .

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience

About this chapter

Cite this chapter

Testone, G. et al. (2006). Biotechnological and Computational Approaches for the Development of Biosensors. In: Biotechnological Applications of Photosynthetic Proteins: Biochips, Biosensors and Biodevices. Biotechnology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36672-2_10

Download citation

Publish with us

Policies and ethics