Skip to main content

Part of the book series: Protein Reviews ((PRON,volume 6))

  • 1383 Accesses

Abstract

Amyloid-related diseases show marked extracellular deposition of nonbranching protein fibrils, called amyloid, in various soft organs. The mechanisms by which soluble amyloid precursor proteins transform into amyloid fibrils remain mainly obscure. Here we discuss data derived from alveolar hydatid cyst-infected (AHC) mouse model of inflammation-associated amyloid A (AA) amyloidosis and concepts related to the potential roles of oxidative stress-related factors and metabolism of monocytoid cell-associated serum amyloid A (SAA) precursor protein in AA fibril formation in vivo. Evidence shows that AA fibrils are generated intracellularly within the activated host monocytoid cells, which prior to and during AA fibril formation generate, among other oxidative stress-related derivatives, 4-hydroxynonenal, a lipid peroxidation product. We suggest that release of the AA fibrils formed intracellularly, either by exocytosis or cell death, could act as the “seed” for the nucleation-dependent expansion of extracellular AA fibril deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali-Khan, Z., Jothy. S., and Alkarmi, T. O. (1983). Murine alveolar hydatidosis: A potential experimental model for the study of AA amyloidosis. Br. J. Exp. Pathol. 64: 599–611.

    PubMed  CAS  Google Scholar 

  • Ali-Khan, Z., and Rauch, R. L. (1987). Demonstration of amyloid and immune complex deposits in renal and hepatic parenchyma of Alaskan alveolar hydatid disease patients. Ann. Trop. Med. Parasitol. 81: 381–392.

    PubMed  CAS  Google Scholar 

  • Ali-Khan, Z., Sipe, J. D., Du, T., and Rimal, H. (1988). Echinococcus multilocularis: Relationship between persistent inflammation, serum amyloid A protein and amyloidosis in four mouse strains. Exp. Parasitol. 67: 334–345.

    Article  PubMed  CAS  Google Scholar 

  • Ali-Khan, Z., Li, W., and Chan, S. L. (1996). Animal model for the pathogenesis of reactive amyloidosis. Parasitol Today. 12: 297–302.

    Article  PubMed  CAS  Google Scholar 

  • Ando, Y., Nyhlin, N., Suhr, O., Holmgren, G., Uchida, K., El Sahly, M., Yamashita, T., Terasaki, H., Nakamura, M., Uchino, M., and Ando, M. (1997). Oxidative stress is found in amyloid deposits in systemic amyloidosis. Biochem. Biophys. Res. Commun. 232: 497–502.

    Article  PubMed  CAS  Google Scholar 

  • Artl, A., Marsche, G., Lestavel, S., Sattler, W., and Malle, E. (2000). Role of serum amyloid A during metabolism of acute-phase HDL by macrophages. Arterioscler. Thromb. Vasc. Biol. 20: 763–772.

    PubMed  CAS  Google Scholar 

  • Baba, S., Masago, T., Takahashi, T., Kasama, T., Sugimura, H., Tsugane, S., Tsutsui, Y., and Shirasawa, H. (1995). A novel alleic variant of serum amyloid A, SAA1γ: genomic evidence, evolution, frequency, and implication as a risk factor for reactive systemic AA amyloidosis. Hum. Mol. Genet. 4: 1083–1087.

    Article  PubMed  CAS  Google Scholar 

  • Babior, B. (2000). Phagocytes and oxidative stress. Am. J. Med. 109: 33–44.

    Article  PubMed  CAS  Google Scholar 

  • Badolato, R., Wang, J. K., Murphy J. M., Murphy, W. J., Lloyd, A. R., Michiel, D. F., Bausserman, L. L., Kelvin, D. J., and Oppenheim, J. J. (1994). Serum amyloid A is a chemoattractant: induction of migration, adhesion, and tissue infiltration of monocytes and polymorphonuclear leukocytes. J. Exp. Med. 180: 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Behl, C., Davis, J. B., Lesley, R., and Schubert, D. (1994). Hydrogen peroxide mediates amyloid B protein toxicity. Cell. 77: 817–827.

    Article  PubMed  CAS  Google Scholar 

  • Bell, A., Chan, S. L., Marcantonio, D., and Ali-Khan, Z. (1996). Both murine SAA1 and SAA2 yield AA amyloid in alveolar hydatid cyst-infected mice. Scand. J. Immunol. 43: 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Bell, A., Chan, S. L., and Ali-Khan, Z. (1999). N-terminal sequence analysis of SAA-derivatives purified from murine inflammatory macrophages. Amyloid Int. J. Exp. Clin. Invest. 6: 31–36.

    CAS  Google Scholar 

  • Benditt, E. P., and Ericksen N. (1977). Amyloid protein SAA is associated with high density lipoprotein from human serum. Proc. Natl. Acad. Sci. USA. 74: 4025–4028.

    Article  PubMed  CAS  Google Scholar 

  • Benditt, E. P., Eriksen, N., and Hanson, R. H. (1979). Amyloid protein SAA is an apoprotein of mouse plasma high density lipoprotein. Proc. Natl. Acad. Sci. USA. 66: 4092–4096.

    Article  Google Scholar 

  • Benson, M. D., and Kleiner, L. (1980). Synthesis and secretion of serum amyloid protein A (SAA) by hepatocytes in mice treated with casein. J. Immunol. 124: 495–499.

    PubMed  CAS  Google Scholar 

  • Buxbaum, J. N., and Tagoe, C. E. (2000). The genetics of the amyloidoses. Ann. Rev. Med. 51: 543–569.

    Article  PubMed  CAS  Google Scholar 

  • Cabana, V. G., Reardon, C. A., Feng, N., Neath, S., Lukens, J., and Getz, G. S. (2003). Serum paraoxonase: effect of the apolipoprotein composition of HDL and the acute phase response. J. Lipid Res. 44: 780–792.

    Article  PubMed  CAS  Google Scholar 

  • Chan, S. L., Chronopoulos, S., Murray, J., Laird, D. W., and Ali-Khan., Z. (1997). Selective localization of murine ApoSAA1/SAA2 in endosomes-lysosomes of activated macrophages and their degradation products. Amyloid Int. J. Exp. Clin. Invest. 4: 40–48.

    CAS  Google Scholar 

  • Chiti, F., Webster, P., Taddei, N., Clark, A., Stefani, M., Ramponi, G., and Dobson, C. M. (1999). Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc. Natl. Acad. Sci. U. S.A. 96: 3590–3594.

    Article  PubMed  CAS  Google Scholar 

  • Chronopoulos, S., Lembo, P., Alizadeh-Khiavi, K., and Ali-Khan, Z. (1992). Ubiquitin: Its potential significance in murine AA amyloidogenesis. J. Pathol. 167: 249–259.

    Article  PubMed  CAS  Google Scholar 

  • Chronopoulos, S., Laird, D. W., and Ali-Khan, Z. (1994). Immunolocalization of serum amyloid A and AA amyloid in lysosomes in murine monocytoid cells: confocal and immunogold electron microscopic studies. J. Pathol. 173: 361–369.

    Article  PubMed  CAS  Google Scholar 

  • Chronopoulos, S., Chan, S., Ratcliffe, M. J. H., and Ali-Khan. Z. (1995). Colocalization of ubiquitin and serum amyloid A and ubiquitin-bound AA in the endosomes-lysosomesa double immunogold electron microscopic study. Amyloid Int. J. Exp. Clin. Invest. 2: 191–194.

    CAS  Google Scholar 

  • Clifton, P. M., Mackinnon, A, M., and Barter, P. J. (1985). Effects of serum amyloid A protein (SAA) on composition, size, and density of high density lipoprotein in subjects with myocardial infarction. J. Lipid Res. 26: 1389–1398.

    PubMed  CAS  Google Scholar 

  • Crabb, J. W., O’Neil, J., Miyagi, M., West, K., and Hoff, H. F. (2002). Hydroxynonenal inactivates cathepsin B by forming Michel adducts with active site residues. Protein Sci. 11: 831–840.

    Article  PubMed  CAS  Google Scholar 

  • Dean, R., Fu, S., Stocker, R., and Davies, M. (1997). Biochemistry and pathology of radical-mediated protein oxidation. Biochem. J. 324: 1–18.

    PubMed  CAS  Google Scholar 

  • Du, T., and Ali-Khan, Z. (1990). Pathogenesis of secondary amyloidosis in an alveolar hydatid cyst mouse model: Histopathology and immuno/enzyme-histochemical analysis of splenic marginal zone cells during amyloidogenesis. J. Exp. Pathol. 71: 313–335.

    CAS  Google Scholar 

  • Dyrks, T., Dyrks, E., Hartmann, T., Masters, C., and Beyreuther, K. (1992). Amyloidogenicity of beta A4 and beta A4-bearing amyloid protein precursor fragments by metal-catalyzed oxidation. J. Biol. Chem. 267: 18210–18217.

    PubMed  CAS  Google Scholar 

  • Fraser, P. E., Nguyen, J. T., Surewicz W. K., and Kirschner, D. A. (1991). pH-dependent structural transitions of Alzheimer amyloid peptides. Biophys. J. 60: 1190–1201.

    Article  PubMed  CAS  Google Scholar 

  • Fratelli, M., Zinetti, M., Fantuzzi, G., Spina, C., Napoletano, G., Donatiello, G., Ravagnan, R., Sipe, J. D., Casey, C. A., and Ghezzi, P. (1997). Time course of circulating acute phase proteins and cytokines in septic patients. Amyloid Int. J. Exp. Clin. Invst. 4: 33–39.

    CAS  Google Scholar 

  • Friedlich, A. L., and Butcher, L. L. (1994). Involvement of free oxygen radicals in B-amyloidosis: An hypothesis. Neurobiol Aging. 15, 443–455.

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto, N., Yajima, M., Ohnishi, Y., Tagima, S., Ishibashi, A., Hata, Y., Enomoto, U., Konohana, I., Wachi, H., and Seyama, Y. (2002). Advanced glycation end product-modified B2-microglobulin is a component of amyloid fibrils of primary localized cutaneous nodular amyloidosis. J. Invest. Dermatol. 118: 479–484.

    Article  PubMed  CAS  Google Scholar 

  • Fuks, A., and Zucker-Franklin, D. (1985). Impaired Kupffer cell function precedes development of secondary amyloidosis. J. Exp. Med. 161: 1013–1028.

    Article  PubMed  CAS  Google Scholar 

  • Furlaneto, C. J., and Campa A. (2000). A novel function of serum amyloid A: A potent stimulus for the release of TNF alpha, IL-1b and IL-8 by human blood neutrophils. Biochem. Biophys. Res. Commun. 268: 405–408.

    Article  PubMed  CAS  Google Scholar 

  • Gabay, C., and Kushner, I. (1999). Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340: 448–454.

    Article  PubMed  CAS  Google Scholar 

  • Ganapathi, M. K., Rzewnicki, D., Samols, D., Jiang, S. L., and Kushner, I. (1991). Effect of combinations of cytokines and hormones on synthesis of serum amyloid A and C-reactive protein in Hep 3B. J. Immunol. 147: 1261–1265.

    PubMed  CAS  Google Scholar 

  • Gonnerman, W. A., Lim, M., Sipe, J. D., Hayes, K. C., and Cathcart, E. S. (1996). The acute phase response in Syrian hamsters elevates apolipoprotein serum amyloid A (apo SAA) and disrupts lipoprotein metabolism. Amyloid Int. J. Exp. Clin. Invest. 3: 261–269.

    CAS  Google Scholar 

  • Gao, Y., Wilder, K., Sunderland, T., Kantham, L., Feng, H. C., Quick, M., Bishara, N., de Silva, A., Augert, G., Tenne-Brown, J., and Collier, G. R. (2003). Elevation in Tanis expression alters glucose metabolism and insulin sensitivity in HAIIE cells. Diabetes 52: 929–934.

    Article  PubMed  CAS  Google Scholar 

  • Gillmore, J. D., Lovat, L. B., Percy, M. R., Pepys, M. B., and Hawkins, P. N. (2001). Amyloid load and clinical outcome in AA amyloidosis in relation to circulating concentration of serum amyloid A protein. Lancet 358: 24–29.

    Article  PubMed  CAS  Google Scholar 

  • Glenner, G. G. (1980). Amyloid deposits and amyloidosis: The β-Fibrillogeneses. N. Engl J. Med. 302: 1283–1292, 1333–1343.

    PubMed  CAS  Google Scholar 

  • Glenner, G. G., Ein, D., Eanes, E. D., Balden, H. A., Terry, W., and Page, D. L. (1971). Creation of “amyloid” fibrils from Bence Jones proteins in vitro. Science 174: 712–714.

    Article  PubMed  CAS  Google Scholar 

  • Guijarro, J. I., Sunde, M., Jones, J. A., Cambell, I. D., and Dobson, C. M. (1998). Amyloid fibril formation by an SH3 domain. Proc. Natl. Acad. Sci. USA. 95: 4224–4228.

    Article  PubMed  CAS  Google Scholar 

  • Hessler, J. R., Robertson, A. L., and Chisolm, G. M. (1979). LDL-induced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells in culture. Arteriosclerosis 32: 213–229.

    Article  CAS  Google Scholar 

  • Hoffman, J. S, and Benditt, E. P. (1982). Changes in high density content following endotoxin administration in the mouse. J. Biol. Chem. 257: 10510–10517.

    PubMed  CAS  Google Scholar 

  • Husby, G., Marhaug, G., Dowton, B., Sletten, K., and Sipe, J. D. (1994). Serum amyloid A (SAA): biochemistry, genetics and the pathogenesis of AA amyloidosis. Amyloid Int. J. Exp. Clin. Invest. 1: 119–137.

    CAS  Google Scholar 

  • Ischiropoulos, H. (2003). Oxidative modifications of alpha-synuclein. Ann. N.Y. Acad. Sci. 991: 93–100.

    PubMed  CAS  Google Scholar 

  • Ischiropoulos, H., and Beckman, J. S. (2003). Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J. Clin. Invest. 111: 163–169.

    Article  PubMed  CAS  Google Scholar 

  • Jessup, W., Mander, E. L., and Dean, R. T. (1992). The intracellular storage and turnover of apolipoprotein B of oxidized LDL in macrophages. Biochim. Biophys. Acta. 1126: 167–177.

    PubMed  CAS  Google Scholar 

  • Kamalvand, G., Pinard, G., and Ali-Khan, Z. (2003). Heme-oxygenase-1 response, a marker of oxidative stress, in a mouse model of AA amyloidosis. Amyloid J. Protein Folding Disord. 10:151–159.

    CAS  Google Scholar 

  • Kamalvand, G, Z., and Ali-Khan, Z. (2004). Immunolocalization of lipid peroxidation/advanced glycation end products in amyloid A amyloidosis. Free. Radic. Biol. Med. 36: 657–664.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson, H. K. R., Tchuda, H., Lake, S., Koistenen, H. A., and Krook, A. (2004). Relationship between serum amyloid A level and Tanis/SelSmRna expression in skeletal muscle and adipose tissue from healthy and Type 2 diabetic subjects. Diabetes 53: 1424–1428.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, J. W. (1996). Alternative conformations of amyloidogenic proteins govern their behaviour. Curr. Opin. Struct. Biol. 6: 11–17.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, J. W., and Lansbury, P. T. (1996). A chemical approach to elucidate the mechanism of transthyretin and β-protein amyloid fibril formation. Amyloid Int. J. Exp. Clin. Invest. 1: 186–205.

    Google Scholar 

  • Kluve-Beckerman, B., Yamada, T., Hardwick, J., Liepnieks, J. J., and Benson, M. D. (1997). Differential plasma clearance of murine acute-phase serum amyloid A proteins SAA1 and SAA2. Biochem. J. 332: 663–669.

    Google Scholar 

  • Kluve-Beckerman, B., Leipnieks, J. J., Wang, L., and Benson, M.D. (1999). Aculture system for the study of amyloid pathogenesis: Amyloid formation by peritoneal macrophages cultured with recombinant serumamyloidA. Am. J.Pathol. 155: 123–133.

    PubMed  CAS  Google Scholar 

  • Kluve-Beckerman, B., Manaloor, J., and Liepnieks J. J. (2001). Binding, trafficking and accumulation of serum amyloid A in peritoneal macrophages. Scand. J. Immunol. 53: 393–400.

    Article  PubMed  CAS  Google Scholar 

  • Kluve-Beckerman, B., Manaloor, J., and Liepnicks, J. J. (2002). A pulse-chase study tracking the conversion of macrophage-endocytosed serum amyloid A into extracellular amyloid. Arthritis Rheum. 46: 1905–1913.

    Article  PubMed  CAS  Google Scholar 

  • Kalra, J., Lautner, D., Massey, K., and Prasad, R. (1988). Oxygen free radicals induced release of lysosomal enzymes in vitro. Mol. Cell. Biochem. 84: 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Kirschner, D. A., Elliot-Bryant, R., Szumowski, K. E., Gonnerman, W. A., Kindy, M. S., and Cathcart, E. S. (1998). In vitro amyloid fibril formation by synthetic peptides corresponding to the amino-terminus of apoSAA isoforms from amyloid-susceptible and amyloid resistant mice. J. Struct. Biol. 124: 88–98.

    Article  PubMed  CAS  Google Scholar 

  • Kiernan, U. A., Tubbs, K. A., Nedelkov, D., Niederkofler, E. E., and Nelson, R. W. (2003). Detection of truncated forms of human serum amyloid A protein in human plasma. FEBS Lett. 537: 166–170.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan. S., Chi, E. Y., Wood, S. J., Kendrick, B. S., Li, C., Garzon-Rodriguez, W., Wypych, J., Randolph, T. W., Narhi, L, O., Biere, A. L., Citron, M., and Carpenter, J. F. (2003). Oxidative dimer formation is the critical rate-limiting step for Parkinson’s disease alpha-synclein fibrillogenesis. Biochemistry. 42: 829–837.

    Article  PubMed  CAS  Google Scholar 

  • Lah, T. T., Hawley, M., Rock, K. L., and Goldberg, A. I. (1995). Gamma-interferon causes a selective induction of the lysosomal proteases, cathepsin B and L, in macrophages. FEBS Lett. 537: 85–89.

    Article  Google Scholar 

  • Lavie, G., Zucker-Franklin, D., and Franklin, E C. (1978). Degradation of serum amyloidA protein by surface-associated enzymes of human blood monocytes. J. Exp. Med. 148: 1020–1031.

    Article  PubMed  CAS  Google Scholar 

  • Lowell, C. A., Potter, D. A, Stearman, R. S., and Marrow, J. F. (1986). Structure of the murine serum amyloid A gene family: gene conversion. J. Biol. Chem. 261: 8442–8452.

    PubMed  CAS  Google Scholar 

  • Liang, J. S., Sloane, J. A., Wells, J. M., Abraham, C. R., Fine, R. E., and Sipe, J. D. (1997). Evidence for local production of acute phase response apolipoptotein serum amyloid A in Alzheimer’s disease brain. Neurosci. Lett. 225: 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Liepnieks, J. J., Kluve-Beckerman, B., and Benson, M. D. (1995). Characterization of amyloid A protein in human secondary amyloidosis: the predominant deposition of serum amyloid A1. Biochim. Biophys. Acta 1270: 81–86.

    PubMed  Google Scholar 

  • Mackness, M. L., Arrol, S., Abbott, C. A., and Durrington, P. N. (1993). Is paraoxanase related to atherosclerosis. Chem-Biol. Interact. 87: 161–171.

    Article  PubMed  CAS  Google Scholar 

  • Malle, E., Bollman, A., Steinmetz, A., Gemsa, D., Leis, H. J., and Satler, W. (1997). Serum amyloid A (SAA) protein enhances formation of cyclooxygenase metabolites of activated human monocytes. FEBS Lett. 419, 215–219.

    Article  PubMed  CAS  Google Scholar 

  • Marhaug, G., Sletten, K., and Husby, G. (1982). Characterization of amyloid related protein SAA complexed with serum lipoprotein (apoSAA). Clin. Exp. Immunol. 50: 382–389.

    PubMed  CAS  Google Scholar 

  • Mander, E. L., Dean, R. T., Stanley, K. K., and Jessup, W. (1994). Apolipoprotein B of oxidized LDL accumulates in the lysosomes of macrophages. Biochim. Biophys. Acta 1212: 80–92.

    PubMed  CAS  Google Scholar 

  • Maury, C. P., Tiitinen, S., Laiho, K., Kaarela, K., and Liljestrom, M. (2000). Raised circulating IL-18 levels in reactive AA amyloidosis. Amyloid Int. J. Exp. Clin. Invest. 9: 141–144.

    Google Scholar 

  • Meek, R. L., Hoffman, J. S., and Benditt, E. P. (1986). Amyloidogenesis: One serum amyloid A isotype is selectively removed from the circulation. J. Exp. Med. 163: 499–510.

    Article  PubMed  CAS  Google Scholar 

  • Meek, R. L., Uriiel-Shoval, S., and Benditt, E. P. (1994). Expression of apolipoprotein serum amyloid A mRNA in human atherosclerotic lesions and cultured vascular cells: Implications for serum amyloid A function. Proc. Natl. Acad. Sci. USA. 91: 3186–3190.

    Article  PubMed  CAS  Google Scholar 

  • Merlini, G., and Westermark, P. (2004). The systemic amyloidoses: clear understanding of the molecular mechanisms offer hope for more effective therapies. J. Int. Med. 255: 159–178.

    Article  CAS  Google Scholar 

  • Mertens, A., and Holvoet, P. (2001). Oxidized LDL and HDL: Antagonists in atherothrombosis. FASEB J. 15: 2073–2084.

    Article  PubMed  CAS  Google Scholar 

  • Meydani, S. N., Cathcart, E. S., and Hopkins R. E. (1981). Antioxidants in experimental amyloidosis of young and old mice. In: Glenner, G. G., Osserman, E. F., Benditt, E. P., Calkins, E., Cohen, A. S., and Zucker-Franklin, D. (eds), Amyloidosis. Plenum Press, New York, pp. 683–690.

    Google Scholar 

  • Migita, K., Yamasaki, S., Shibatomi, K., Ida, H., Kita, M., Kawakami, A., and Eguchi, K. (2001). Impaired degradation of serum amyloid A (SAA) protein by cytokine-stimulated monocytes. Clin. Exp. Immunol. 123: 408–411.

    Article  PubMed  CAS  Google Scholar 

  • Miyata, T., Wada, Y., Cai, Z., Iida, Y., Horie, K., Yasuda, Y., Maeda, K., Kurokawa, B., and van Ypersele de Strihou, C. (1997). Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with endstage renal failure. Kidney Int. 51: 1170–118.

    Article  PubMed  CAS  Google Scholar 

  • O’Hara, R., Murphy, E. P., Whitehead, A. S., FitzGerald, O., and Bresnihan, B. (2004). Local expression of serum amyloid A and formyl peptide receptor-like 1 genes in synovial tissue is associated with matrix metalloproteinase production in patients with inflammatory arthritis. Arthritis Rheum. 50: 1788–1799.

    Article  PubMed  CAS  Google Scholar 

  • Okada, K., Wangpoengrakul, C., Osawa, T., Toyokunit, S., Tanaka, K., and Uchida, K. (1999). 4-Hydroxy-2-nonenalmediated impairment of intracellular proteolysis during oxidative stress. J. Biol. Chem. 274: 23787–23793.

    Article  PubMed  CAS  Google Scholar 

  • Paik, S. R., Lee, D., Cho, H-J., Lee, E-N., and Chang, C-S. (2003). Oxidized glutathione stimulated the amyloid formation of α-synuclein. FEBS Lett. 537: 63–67.

    Article  PubMed  CAS  Google Scholar 

  • Pan, K., Baldwin, M., Nguyen, J. T., Gasset, M., Serban, A., Groth, D., Mehlhorn, I., Huang, Z., Fletterick, R. J., and Prusiner, S. B. (1993). Conversion of alpha-helices into beta sheets features in the formation of scrapie prion proteins. Proc. Natl. Acad. Sci. USA. 90, 10962–10966.

    Article  PubMed  CAS  Google Scholar 

  • Pappola, M. A., Chayan, Y-J., Omar, R. A., Hsiao, K., Perry, G., Smith, M. A., and Bozner, P. (1998). Evidence of oxidative stress and in vivo neurotoxicity of B-amyloid in a transgenic mouse model of Alzheimer’s disease. Am. J. Pathol. 152: 871–877.

    Google Scholar 

  • Parthasarathy, S., Barnett, J., and Fong, L. G. (1990). High-density lipoprotein inhibits the oxidative modification of lowdensity lipoprotein. Biochim. Biophys. Acta 1044: 275–283.

    PubMed  CAS  Google Scholar 

  • Phipps-Yonas, H., Pinnard, G., and Ali-Khan, Z. (2004). Humoral proinflammatory cytokine and SAA generation profiles and spatio-temporal relationship between SAA and lysosomal cathepsin B and D in murine splenic monocytoid cells during AA amyloidosis. Scand. J. Immunol. 59:168–176.

    Article  PubMed  CAS  Google Scholar 

  • Rapala-Kozik, M., Kozik, A., and Traves, J. (1998). Effect of oxidation of B-amyloid precursor protein on its B-secretase cleavage. A model study with synthetic peptides and candidate B-secretase. J. Peptide Res. 52: 315–320.

    CAS  Google Scholar 

  • Ray, A., and Ray, B. K. (1999). Persistent expression of serum amyloid A during experimentally induced chronic inflammatory condition in rabbit involves differential activation of SAF, NF(kappa)B, and C/EBP transcription factors. J. Immunol. 163: 2143–2150.

    PubMed  CAS  Google Scholar 

  • Rocken, C., and Kisilevsky, R. (1997). Binding and endocytosis of murine high density lipoprotein from healthy (HDLSAA) by murine macrophages in vitro. A light and electronmicroscopic investigation. Amyloid: Int. J. Exp. Clin. Invest. 4: 259–273.

    CAS  Google Scholar 

  • Rocken, C., Kientsch-Engel, R., Mansfield, S., Stix, B., Stubenrauch, K., Weigle, B., Buling, F., Schwan, M., and Saeger, W. (2003). Advanced glycation end products and receptor for advanced glycation end products in AA amyloidosis. Am. J. Pathol. 162: 1213–1220.

    PubMed  Google Scholar 

  • Rysava, R., Merta, M., Tesar, V., Jirsa, M., and Zima, T. (1999). Can serum amyloid A or macrophage colony stimulating factor serve as marker of amyloid formation process? Biochem. Mol. Biol. Intern. 47: 845–850.

    CAS  Google Scholar 

  • Sato, K., Akaki, T., and Tomioka, H. (1998). Differential potentiation of anti-mycobacterial activity and reactive nitrogen intermediate-producing ability of murine peritoneal macrophages activated interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). Clin. Exp. Immunol. 112: 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Sayer, L. M., Zagorski, M. G., Surewicz, W. K., Krafft, G. A., and Perry, G. (1997). Mechanism of neurotoxicity associated with amyloid B deposition and the role of free radicals in the pathogenesis of Alzheimer’s disease: A critical appraisal. Chem. Res. Toxicol. 10:518–526.

    Article  Google Scholar 

  • Sayer, L. M., Smith, M. A., and Perry, G. (2001). Chemistry and biochemistry of oxidative sress in neurodegenerative disease. Curr. Med. Chem. 8: 721–738.

    Google Scholar 

  • Schweers, O., Mandelkow, E. M., Blenart, J., and Mandelkow, E. (1995). Oxidation of cysteine-322 in the repeat domain of microtubule-associated protein T controls the in vitro assembly of paired helical filaments. Proc. Natl. Acad. Sci. USA. 92: 8463–8467.

    Article  PubMed  CAS  Google Scholar 

  • Shiina, M. M., Nishimoto, N., Yoshizaki, K., Kishimoto, T., and Akamatsu, K. (2004). Anti-interleukin 6 receptor antibody inhibits murine AA amyloidosis. J. Rheumatol. 31: 1132–1138.

    PubMed  Google Scholar 

  • Shirahama, T., and Cohen, A. S. (1975). Intralysosomal formation of amyloid fibrils. Am. J. Pathol. 81: 101–116.

    PubMed  CAS  Google Scholar 

  • Skogen, B., Thorsteinsson, L., and Natvig J. B. (1980). Degradation of protein SAA to an AA-like fragment by enzymes of monocytic origin. Scand. J. Immunol. 11: 533–540.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M. A., Hirai, K., Hsiao, K., Pappola, M. A., Haris, P. L., Siedlak, S. L., Tabaton, M., and Perry, G. (1998). Amyloid beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J. Neurochem. 70: 2212–2215.

    PubMed  CAS  Google Scholar 

  • Steel, D. M., and Whitehead A. S. (1994). The major acute phase reactants: C-reactive protein, serum amyloid P component and serum amyloid A protein. Immunol. Today. 15: 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, F. J. (2004). Hypothetical structure of human serum amyloid A. Amyloid J. Protein Folding Disord 11: 71–84.

    Article  CAS  Google Scholar 

  • Su, S. B., Gong, W., Gao, J-L., Shen, W., Murphy, P. M., Oppenheim, J. J., and Wang, J. M. (1999). A seven-transmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid A for human phagocytic cells. J. Exp. Med. 189: 395–402.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, F., Migita, K., Kawabe, Y., Aoyagi, T., Ida, H., Kawakami, A., and Eguchi, K. (2004). Interleukin-18 induces serum amyloid A (SAA) protein production from rheumatoid synovial fibroblasts. Life Sci. 74: 1671–1679.

    Article  PubMed  CAS  Google Scholar 

  • Thorn, C. F., Lu, Z.-Y., and Whitehead A. S. (2004). Regulation of the human acute phase serum amyloid A genes by tumour necrosis factor-alpha, interleukin-6 and glucocorticoids in hepatic and epithelial cell lines. Scand. J. Immunol. 59: 152–158.

    Article  PubMed  CAS  Google Scholar 

  • Treves, S., and Ali-Khan, Z. 1984. Characterization of the inflammatory cells in progressing tumour-like hydatid cysts. 1. Kinetics and composition of inflammatory infiltrates. Tropenmed. Parasit. 35, 183–188.

    CAS  Google Scholar 

  • Uhlar, C. M., Burgess, C. J., Sharp, P. M., and Whitehead, A. S. (1994). Evolution of the serum amyloid A (SAA) protein superfamily. Genomics 19: 228–234.

    Article  PubMed  CAS  Google Scholar 

  • Uhlar, C. M., and Whitehead, A. S. (1999). Serum amyloid A, the major vertebrate acute-phase reactant. Eur. J. Biochem. 265: 501–523.

    Article  PubMed  CAS  Google Scholar 

  • Uriel-Shoval, S., Reinhold, L., and Yaacov, M. (2000). Expression and function of serum amyloid A, a major acute-phase protein, in normal and disease states. Curr. Opin. Hematol. 71: 64–69.

    Article  Google Scholar 

  • Van Lenten, B. J., Hama, S. Y., De Beer, F. C., Stafforini, D. M., McIntyre, T. M., Prescott, S. M., La Du, B. N., Fogelman, A. M., and Navab, M. (1995). Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. J. Clin. Invest. 96: 2758–2767.

    PubMed  Google Scholar 

  • Walder, K., Kantham, L., Millan, J. S., Trevaskis, J., Kerr, L., de Silva, A., Sunderland, T., Godde, N., Gao, Y., Bishara, N., Windmill, K., Tenne-Brown., Augert, G., Zimmet, P. Z, and Collier, G. R. (2002). Tanis: A link between Type 2 diabetes and inflammation? Diabetes 51:1859–1866.

    Article  PubMed  CAS  Google Scholar 

  • Westermark, G. T., and Engstrom, U. (1982). A serum AA-like protein as a common constituent of secondary amyloid fibrils. Clin. Exp. Immunol. 49: 725–731.

    PubMed  CAS  Google Scholar 

  • Westermark, G. T., Engstrom, U., and Westermark, P. (1992). The N-terminal segment of protein AA determines its fibrillogenic property. Biochem. Biophys. Res. Commun. 182: 27–33.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, T., Kluve-Beckerman, B., Liepnieks, J. J., and Benson, M. D. (1994). Fibril formation from recombinant human serum amyloid A. Biochim. Biophys. Acta 1226: 323–329.

    PubMed  CAS  Google Scholar 

  • Yamada, T., Kluve-Beckerman, B., Liepnieks, J. J., and Benson, M. D. (1995). In vitro degradation of serum amyloid A by cathepsin D and other acid proteases: Possible protection against amyloid fibril formation. Scand. J. Immunol. 41: 570–574.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, T., Liepnieks, J. J., Kluve-Beckerman, B., and Benson, M. D. (1995). Cathepsin B generates the most common form of amyloid A (76 residues) as a degradation product from serum amyloid A. Scand. J. Immunol. 41: 94–97.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, T., Liepnieks, J. J., Benson, M. D., and Kluve-Beckerman, B. (1996). Accelerated amyloid deposition in mice treated with the aspartic protease inhibitor, pepstatin. J. Immunol. 157: 901–907.

    PubMed  CAS  Google Scholar 

  • Yamada, T., Okuda, Y., Takasugi, K., Wang, L., Marks, D., Benson M. D., and Kluve-Beckerman, B. (2003). An allele of serum amyloid A1 associated with amyloidosis in both Japanese and Caucasians. Amyloid J. Protein Folding Disord. 10: 7–11.

    CAS  Google Scholar 

  • Yamamoto, K., and Migita, S. (1985). Complete primary structures of two major murine serum amyloid A proteins deduced from cDNA sequences. Proc. Natl. Acad. Sci. USA. 82: 2915–2919.

    Article  PubMed  CAS  Google Scholar 

  • Yan, S. D., Zhu, H., Zhu, A., Glabek, A., Du, H., Roher, A., Yu, J., Soto, C., Schmidt, A. M., Stern, D., and Kindy, M. (2000). Receptor-dependent cell stress and amyloid accumulation in systemic amyloidosis. Nat. Med. 6: 643–651.

    Article  PubMed  CAS  Google Scholar 

  • Yavin, E. J., Preciado-Patt, L., Rosen, O., Yaron, M., Suessmuth, R. D., Levartowsky, D., Jung, G., Lider, O., and Fridkin, M. (2000). Serum amyloid A protein-derived peptide, present in human rheumatic synovial fluids, induce the secretion of interferon-gamma by human CD _ 4 T lymphocytes. FEBS Lett. 472: 259–262.

    Article  PubMed  CAS  Google Scholar 

  • Zdolsek, J., Zhang, H., Roberg, K., and Brunk, U. (1993). H2O2-mediated damage to lysosomal membranes of J-774 cells. Free. Radic. Res. Commun. 18: 71–85.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Zhao, B., Yew, D. T., Kusiak, J. W., and Roth, G. S. (1997). Processing of Alzheimer’s amyloid precursor protein during H2O2-induced apoptosis in human neuronal cells. Biochem Biophys. Res. Commun. 235: 845–848.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ali-Khan, Z. (2007). Serum Amyloid A and AA Amyloidosis. In: Uversky, V.N., Fink, A.L. (eds) Protein Misfolding, Aggregation, and Conformational Diseases. Protein Reviews, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36534-3_12

Download citation

Publish with us

Policies and ethics