Skip to main content

σ Receptors: Historical Perspective and Background

  • Chapter
Sigma Receptors

Summary

The early history of σ receptors is characterized by classical pharmacological approaches which succeeded in defining a unique drug selectivity pattern and anatomical distribution for these proteins. σ Receptors are widely distributed in the body, where they mediate a variety of physiological functions. The chemical diversity of compounds that interact with σ receptors is vast and includes therapeutically relevant entities including psychotomimetic opiates, neuroleptics, antihistamines, and antidepressants. The recent revolution in molecular biology has provided additional information about σ receptors, including the sequence of one of its major subtypes and a host of experimental tools to aid in selectively deciphering its functions. We now know that σ receptors have important implications for a number of disease states and mounting evidence indicates that they are viable therapeutic targets for medication development. The remaining chapters in this book summarize our current knowledge regarding the medicinal chemistry, cell biological and clinical implications of σ receptors. It is hoped that this information will lay the groundwork for innovative future studies to stimulate new insights into the physiological and therapeutic relevance of σ receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Martin WR, Eades CE, Thompson JA, Huppler RE. The effects of morphine and nalorphine-like drugs in the non-dependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 1976, 197:517–532.

    PubMed  CAS  Google Scholar 

  2. Iwamoto ET. Locomotor activity and antinociception after putative mu, kappa and sigma opioid receptor agonists in the rat: influence of dopaminergic agonists and antagonists. J Pharmacol Exp Ther 1981,217:451–460.

    PubMed  CAS  Google Scholar 

  3. Vaupel DB. Naltrexone fails to antagonize the sigma effects of PCP and SKF 10,047 in the dog. Eur J Pharmacol 1983,92:269–274.

    PubMed  CAS  Google Scholar 

  4. Young GA, Khazan N. Differential neuropharmacological effects of mu, kappa and sigma opioid agonists on cortical EEG power spectra in the rat. Stereospecificity and naloxone antagonism. Neuropharmacology 1984,23: 1161–1165.

    PubMed  CAS  Google Scholar 

  5. Berzetei-Gurske IP, Toll L. The mu-opioid activity of kappa-opioid receptor agonist compounds in the guinea pig ileum. Eur J Pharmacol 1992,212:283–286.

    PubMed  CAS  Google Scholar 

  6. Khazan N, Young GA, El-Fakany EE, Hong 0, Caliigaro D. Sigma receptors mediated the psychotomimetic effects of N-allylnormetazocine (SKF-10,047), but not its opioid agonistic-antagonistic properties. Neuropharmacology 1984,23:983–987.

    PubMed  CAS  Google Scholar 

  7. Mendelsohn LG, Kalra V, Johnson BG, Kerchner GA. Sigma opioid receptor: characterization and co-identity with the phencyclidine receptor. J Pharmacol Exp Ther 1985,233:597–602.

    PubMed  CAS  Google Scholar 

  8. Quirion R, Hammer P Jr, Herkenham M, Pert CB. The phencyclidine (angel dust)/sigma ‘opiate’ receptor: Its visualization by tritium-sensitive film. Proc Natl Acad Sci 1981, 785881–5885.

    PubMed  CAS  Google Scholar 

  9. Zukin SR, Brady KT, Slifer BL, Balster RL. Behavioral and biochemical stereoselectivity of sigma opiate/PCP receptors. Brain Res 1984, 174–177.

    Google Scholar 

  10. Sircar R, Nichtenhauser R, Ieni JR, Zukin SR. Characterization and autoradiographic visualization of (+)-[3H]SKF10,047 binding in rat and mouse brain: further evidence for phencyclidine/“sigma opiate” receptor commonality. J Pharmacol Exp Ther 1986,257:681–688.

    Google Scholar 

  11. Wong EH, Knight AR, Woodruff GN. [3H]MK-801 labels a site on the N-methyl-Daspartate receptor channel complex in rat brain membranes. J Neurochem 1988, 50:274–281.

    PubMed  CAS  Google Scholar 

  12. Su T-P. Psychotomimetic opioid binding: Specific binding of [3H]-SKF-10047 to etorphine-inaccessible sites in guinea-pig brain. Eur J Pharmacol 1981, 75:81–82.

    PubMed  CAS  Google Scholar 

  13. Su T-P. Evidence for sigma opioid receptor: Binding of [3H]SKF-10047 to etorphineinaccessible sites in guinea-pig brain. J Pharmacol Exp Ther 1982,223:284–290.

    PubMed  CAS  Google Scholar 

  14. Tam SW. Naloxone-inaccessible σ receptor in rat central nervous system. Proc Natl Acad Sci USA 1983,80:6703–6707.

    PubMed  CAS  Google Scholar 

  15. Tam SW, Cook L. o Opiates and certain antipsychotic drugs mutually inhibit (+)-[3H]SKF10,047 and [3H]haloperidol binding in guinea pig brain membranes. Proc Natl Acad Sci USA 81 5618–5621.

    Google Scholar 

  16. Largent BL, Gundlach AL, Snyder SH. Psychotomimetic opiate receptors labeled and visualized with (+)-[3H]3-(3-hydroxyphenyl)-N-(l-propyl)piperidine. Proc Natl Acad Sci 1984,81: 4983–4987.

    PubMed  CAS  Google Scholar 

  17. Hjorth SA, Carlsson A, Wikstrom H, Lindberg P, Sanchez D, Hacksell U, Arvidsson LE, Svensson U, Nilsson JLG. 3-PPP, a new centrally acting dopamine receptor agonist with selectivity for autoreceptors. Life Sci 1981,28:1225–1238.

    PubMed  CAS  Google Scholar 

  18. Weber E, Sonders M, Quarum M, McLean S, Pou S, Keana JFW. 1,3-Di(2-[5-3H]tolyl)guanidine: A selective ligand that labels o-type receptors for psychotomimetic opiates and antipsychotic drugs. Proc Natl Acad Sci USA 1986, 83:8784–8788.

    PubMed  CAS  Google Scholar 

  19. de Costa BR, Bowen WD, Hellewell SB, Walker JM, Thurkauf A, Jacobson AE, Rice KC. Synthesis and evaluation of optically pure [3H]-(+)-pentazocine, a highly potent and selective radioligand for σ receptors. FEBS Lett 1989, 251 53–58.

    PubMed  Google Scholar 

  20. Bowen WD, de Costa BR, Hellewell SB, Walker JM, Rice KC. [3H]-(+)-Pentazocine: a potent and highly selective benzomorphan-based probe for sigma-1 receptors. Mol Neuropharmacol 1993, 3:117–126.

    CAS  Google Scholar 

  21. Hanner M, Moebius FF, Flandorfer A, Knaus H-G, Striessnig J, Kempner E, Glossmann H. Purification, molecular cloning, and expression of the mammalian σ, binding site. Proc Natl Acad Sci USA 1996,933072–8077.

    Google Scholar 

  22. Mei J and Pasternak GW. Molecular cloning and pharmacological characterization of the rat σ1, receptor. Biochem Pharmacol2001,62:349–355.

    PubMed  CAS  Google Scholar 

  23. Pan Y-X, Mei J, Xu J, Wan B-L, Zuckerman A, Pasternak GW. Cloning and characterization of a mouse σ, receptor. J Neurochem 1998, 70:2279–2285.

    PubMed  CAS  Google Scholar 

  24. Seth P, Fei YJ, Li HW, Huang W, Leibach FH, Ganapathy V. Cloning and functional characterization of a σ receptor from rat brain. J Neurochem 1998, 70:922–931.

    PubMed  CAS  Google Scholar 

  25. Seth P, Leibach FH, Ganapathy V. Cloning and structural analysis of the cDNA and the gene encoding the murine type 1 σ receptor. Biochem Biophys Res Commun 1997, 41 535–540.

    Google Scholar 

  26. Aydar E, Palmer CP, Klyachko VA, Jackson MB. The σ receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron 2002,34:399–410.

    PubMed  CAS  Google Scholar 

  27. Jbilo 0, Vidal H, Paul R, De Nys N, Bensaid M, Silve S, Carayon P, Davi D, Galiegue S, Bourrie B, Guillemot J-C, Ferrara P, Loison G, Maffrand J-P, Le Fur G, Casellas P. Purification and characterization of the human SR 31747A-binding protein. A nuclear membrane protein related to yeast sterol isomerase. J Biol Chem 1997, 272:27107–27115.

    PubMed  CAS  Google Scholar 

  28. Novakova M, Eta C, Barg J, Vogel E, Hasin Y, Eilam Y. Ionotropic action of sigma receptor ligands in isolated cardiac myocytes from adult rats. Eur J Pharmacol 1995, 286: 19–30.

    PubMed  CAS  Google Scholar 

  29. Wolfe SA Jr, Ha BK, Whitlock BB, Saini P. Differential localization of three distinct binding sites for sigma receptor ligands in rat spleen. J Neuroimmunol 1997, 72:45–58.

    PubMed  CAS  Google Scholar 

  30. Hayashi T, Su T-P. Regulating ankyrin dynamics: Roles of sigma-1 receptors. Proc Natl Acad Sci 2001,98:491–496.

    PubMed  CAS  Google Scholar 

  31. Yamamoto H, Kametani F, Namiki Y, Yamamoto T, Karasawa J, Shen H, Ikeda K, Hagino Y, Kobayashi H, Sora I, Nukuda T. Identification of GRP78 as a type-1 sigma receptor (SigmaR1)-associated protein. Soc Neurosci Abst 2002, program #833.9.

    Google Scholar 

  32. Chaki S, Tanaka M, Muramatsu M, Otomo S. NE-100, a novel potent sigma ligand, preferentially binds to ol binding sites in guinea pig brain. Eur J Pharmacol 1994,251:Rl–2.

    Google Scholar 

  33. Matsumoto RR, Bowen WD, Tom MA, Vo VN, Truong DD, de Costa BR. Characterization of two novel σ receptor ligands: antidystonic effects in rats suggest σ receptor antagonism. Eur J Pharmacol 1995, 280:301–310.

    PubMed  CAS  Google Scholar 

  34. Alonso G, Phan V, Guillemain I, Saunier M, Legrant A, Anoal M, Maurice T. Immonocytochemical localization of the sigmal receptor in the adult rat central nervous system. Neuroscience 2000,97: 155–170.

    PubMed  CAS  Google Scholar 

  35. Hayashi T, Maurice T, Su TP. ca2+ signaling via ol receptors: novel regulatory mechanism affecting intracellular ca2+ concentration. J Pharmacol Exp Ther 2000, 293:788–798.

    PubMed  CAS  Google Scholar 

  36. Hiramatsu M, Hoshino T. Involvement of kappa-opioid receptors and sigma receptors in memory function demonstrated using an antisense strategy. Brain Res 2004, 1030:247–255.

    PubMed  CAS  Google Scholar 

  37. Kitaichi K, Chabot JG, Moebius FF, Flandorfer A, Glossman H, Quirion R. Expression of the purported sigma11) receptor in the mammalian brain and its possible relevance in deficits induced by antagonism of the NMDA receptor complex as revealed using an antisense strategy. J Chem Neuroanat 2000,20:375–387.

    PubMed  CAS  Google Scholar 

  38. Langa F, Codony X, Tovar V, Lavado A, Gimenez E, Cozar P, Cantero M, Dordal A, Hernandez E, Perez R, Monroy X, Zamanillo D, Guitart X, Montoliu L. Generation and phenotypic analysis of sigma receptor type I (ol) knockout mice. Eur J Neurosci 2003, 18:301–310.

    Google Scholar 

  39. Matsumoto RR, McCracken KA, Friedman MJ, Pouw B, de Costa BR, Bowen WD. Conformationally restricted analogs of BD1008 and an antisense oligodeoxynucleotide targeting σ1 receptors produce anti-cocaine effects in mice. Eur J Pharmacol 2001, 419:163–174.

    PubMed  CAS  Google Scholar 

  40. Matsumoto RR, McCracken KA, Pouw B, Zhang Y, Bowen WD. Involvement of sigma receptors in the behavioral effects of cocaine: evidence from novel ligands and antisense oligodeoxynucleotides. Neuropharmacology 2002,42: 1043–1055.

    PubMed  CAS  Google Scholar 

  41. Maurice T, Phan VL, Urani A, Guillemain I. Differential involvement of the sigma11) receptor in the anti-amnesic effect of neuroactive steroids, as demonstrated using an in vivo antisense strategy in the mouse. Br J Pharmacol2001, 134: 1731–1741.

    PubMed  CAS  Google Scholar 

  42. Mei J, Pasternak GW. σ1 receptor modulation of opioid analgesia in the mouse. J Pharmacol Exp Ther 2002,300:1070–1074.

    PubMed  CAS  Google Scholar 

  43. Palacios G, Muro A, Vela JM, Molina-Holgado E, Guitart X, Ovalle S, Zamanillo D. Immunohistochemical localization of the sigma-1 receptor in oligodendrocytes in the rat central nervous system. Brain Res 2003,961:92–99.

    PubMed  CAS  Google Scholar 

  44. Romieu P, Martin-Fardon R, Maurice T. Involvement of the σ1 receptor in the cocaineinduced conditioned place preference. Neuroreport 2000, 11:2885–2888.

    PubMed  CAS  Google Scholar 

  45. Romieu P, Meunier J, Garcia D, Zozime N, Martin-Fardon R, Bowen WD, Maurice T. The sigma11) receptor activation is a key step for the reactivation of cocaine conditioned place preference by drug priming. Psychopharmacology 2004, 175: 154–162.

    PubMed  CAS  Google Scholar 

  46. Takebayashi M, Hayashi T, Su TP. Nerve growth factor-induced neurite sprouting in PC12 cells involves σ-1 receptors: implications for antidepressants. J Pharmacol Exp Ther 2002,303:1227–1237.

    PubMed  CAS  Google Scholar 

  47. Hellewell SB, Bowen WD. A sigma-like binding site in rat pheochromocytoma (PC12) cells: decreased affinity for (+)-benzomorphans and lower molecular weight suggest a different sigma receptor form from that of guinea pig brain. Brain Res 1990, 527:244–253.

    PubMed  CAS  Google Scholar 

  48. Hellewell SB, Bruce A, Feinstein G, Orringer J, Williams W, Bowen WD. Rat liver and kidney contain high densities of sigma-1 and sigma-2 receptors: characterization by ligand binding and photoaffinity labeling. Eur J Pharmacol Mol Pharmacol Sect 1994, 268:9–18.

    CAS  Google Scholar 

  49. Bowen WD, Bertha CM, Vilner BJ, Rice KC. CB-64D and CB-184: ligands with high σ2 receptor affinity and subtype selectivity. Eur J Pharmacol 1995,278:257–260.

    PubMed  CAS  Google Scholar 

  50. Perregaard J, Moltzen EK, Meier E, Sanchez C. Sigma ligands with subnanomolar affinity and preference for the sigma2 binding site. 1.3-(omega-aminoalky1)-1H-indoles. J Med Chem 1995,38:1998–2008.

    PubMed  CAS  Google Scholar 

  51. Booth RG, Wyrick SD, Baldessarini RJ, Kula NS, Myers AM, Mailman RB. New o-like receptor recognized by novel phenylaminotetralins: ligand binding and functional studies. Mol Pharmacol 1993,4:1232–1239.

    Google Scholar 

  52. Carr DJ, De Costa BR, Radesca L, Blalock JE. Functional assessment and partial characterization of [3H](+)-pentazocine binding sites on cells of the immune system. J Neuroimmunol 1991,35: 153–166.

    PubMed  CAS  Google Scholar 

  53. Enomoto R, Ogita K, Yoneda Y. Multiplicity of [3H]1,3-di-o-tolylguanidine binding sites with low affinity for haloperidol in rat brain. Biol Pharm Bull 1993, 16:989–996.

    PubMed  CAS  Google Scholar 

  54. Ganapathy ME, Prasad PD, Huang W, Seth P, Leibach FH, Ganapathy V. Molecular and ligand-binding characterization of the σ receptor in the Jurkat human lymphocyte cell line. J Pharmacol Exp Ther 1999, 289:251–260.

    PubMed  CAS  Google Scholar 

  55. Zarnanillo D, Romero G, Dordal A, Perez P, Vincent L, Mendez R, Andreu F, Hernandez E, Perez R, Monroy X, Ovalle S, Guitart X. Increase of forskolin-stimulated adenylyl cyclase and AP-1 activities by sigma1 receptor expression. FENS Absr 2002, A04617.

    Google Scholar 

  56. Inada T, Iijima Y, Uchida N, Maeda T, Iwashita S, Ozaki N, Harano M, Komiyama T, Yamada M, Sekine Y, Iyo M, Sora I, Ujike H. No association found between the type 1 sigma receptor gene polymorphisms and methamphetamine abuse in the Japanese population: a collaborative study by the Japanese Genetics Initiative for Drug Abuse. Ann NY Acad Sci 2004, 1025:27–33.

    PubMed  CAS  Google Scholar 

  57. Ishiguro H, Ohtsuki T, Toru M, Itokawa M, Aoki J, Shibuya H, Kurumaji A, Okubo Y, Iwawaki A, Ota K, Shimizu H, Hamaguchi H, Arinami T. Association between polymorphisms in the type 1 sigma receptor gene and schizophrenia. Neurosci Lett 1998, 257:45–48.

    PubMed  CAS  Google Scholar 

  58. Miyatake R, Furukawa A, Matsushita S, Higuchi S, Suwaki H. Functional polymorphisms in the sigma l receptor gene associated with alcoholism. Bio Psychiatr 2004,55:85–90.

    CAS  Google Scholar 

  59. Ohmori 0, Shinkai T, Suzuki T, Okano C, Kojima H, Terao T, Nakamura J. Polymorphisms of the sigma, receptor gene in schizophrenia: An association study. Am J Med Genet 2000,96: 118–122.

    PubMed  CAS  Google Scholar 

  60. Satoh F, Miyatake R, Furukawa A, Suwaki H. Lack of association between sigma l receptor gene variants and schizophrenia. Psychiatr Clin Neurosci 2004,58:359–363.

    CAS  Google Scholar 

  61. Uchida N, Ujike H, Nakata K, Takaki M, Nomura A, Katsu T, Tanaka Y, Imamura T, Sakai A, Kuroda S. No association between the sigma receptor type 1 gene and schizophrenia: results of analysis and meta-analysis of case-control studies. BMC Pscyhiatr 2003,3:13.

    Google Scholar 

  62. Su T-P, London ED, Jaffe JH. Steroid binding at σ receptors suggest a link between endocrine, nervous and immune systems. Science 1988,240:219–221.

    PubMed  CAS  Google Scholar 

  63. McCann DJ, Su T-P. Solubilization and characterization of haloperidol-sensitive (+)-[3H]SKF-10,047 binding sites (sigma sites) from rat liver membranes. J Pharmacol Exp Ther 1991,257:547–554.

    PubMed  CAS  Google Scholar 

  64. Yamada M, Nishigami T, Nakasho K, Nishimoto Y, Miyaji H. Relationship between sigma-like site and progesterone-binding site of adult male rat liver microsomes. Hepatology 1994,20: 1271–1280.

    PubMed  CAS  Google Scholar 

  65. Klein M, Cooper TB, Musacchio JM. Effects of haloperidol and reduced haloperidol on binding to o sites. Eur J Pharmacol 1994,254:239–248.

    PubMed  CAS  Google Scholar 

  66. Maurice T, Roman FJ, Privat A. Modulation by neurosteroids of the in vivo (+)-[3H]SKF-10,047 binding to sigma1 receptors in the mouse forebrain. J Neurosci Res 1996,46:734–743.

    PubMed  CAS  Google Scholar 

  67. Ramamoorthy JD, Ramamoorthy S, Mahesh VB, Leibach FH, Ganapathy V. Cocainesensitive o-receptor and its interaction with steroid hormones in the human placental syncytiotrophoblast and in choriocarcinoma cells. Endocrinology 1995, 136:924–932.

    PubMed  CAS  Google Scholar 

  68. Maurice T, Urani A, Phan V-L, Romieu P. The interaction between neuroactive steroids and the σ, receptor function: behavioral consequences and therapeutic opportunities. Brain Res Rev 2001,37:116–132.

    PubMed  CAS  Google Scholar 

  69. Roman F, Pascaud X, Duffy 0, Vauche D, Martin B, Junien JL.Neuropeptide Y andpeptide YY interact with brain sigma and PCP binding sites. Eur J Pharmacol 1989, 174:301–302.

    PubMed  CAS  Google Scholar 

  70. Basile AS, Paul IA, Mirchevich A, Kuijpers G, De Costa B. Modulation of (+)-[3H]pentazocine binding to guinea pig cerebellum by divalent cations. Mol Pharmacol 1992,42:882–889.

    PubMed  CAS  Google Scholar 

  71. Connor MA, Chavkin C. Ionic zinc may function as an endogenous ligand for the haloperidol-sensitive σ2 receptor in rat brain. Mol Pharmacol 1992,42:471–479.

    PubMed  CAS  Google Scholar 

  72. Su T-P, Weissman AD, Yeh S-Y. Endogenous ligands for sigma opioid receptors in the brain (“sigmaphin”): evidence from binding assays. Life Sci 1986,38:2199–2210.

    PubMed  CAS  Google Scholar 

  73. Contreras PC, DiMaggio DA, O’Donohue TL. An endogenous ligand for the sigma opioid binding site. Synapse 1987, 1:57–61.

    PubMed  CAS  Google Scholar 

  74. Nagornaia LV, Samovilvo NN, Korobov NV, Vinogradov VA. Partial purification of endogenous inhibitors of (+)-[3H]SKF-10047 binding with sigma opioid receptors of the liver. Biull Eksp Biol Med 1988, 106:314–317.

    PubMed  CAS  Google Scholar 

  75. Neumaier JF, Chavkin C. Calcium-dependent displacement of haloperidol-sensitive σ receptor binding in rat hippocampal slices following tissue depolarization. Brain Res 1989, 500:215–222.

    PubMed  CAS  Google Scholar 

  76. Connor MA, Chavkin C. Focal stimulation of specific pathways in the rat hippocampus causes a reduction in radioligand binding to the haloperidol-sensitive sigma receptor. Exp Brain Res 1991,85:528–536.

    PubMed  CAS  Google Scholar 

  77. Bouchard P, Quirion R. [3H]1,3-Di(2-tolyl)guanidine and [3H](+)pentazocine binding sites in the rat brain: autoradiographic visualization of the putative sigma1 and sigmaz receptor subtypes. Neuroscience 1997,76:467–477.

    PubMed  CAS  Google Scholar 

  78. Gundlach AL, Largent BL, Snyder SH. Autoradiographic localization of sigma receptor binding sites in guinea pig and rat central nervous system with (+)3H-3-(3-hydroxypheny1)-N-(1-propy1)piperidine. J Neurosci 1986,6: 1757–1770.

    PubMed  CAS  Google Scholar 

  79. McLean S, Weber E. Autoradiographic visualization of haloperidol-sensitive sigma recepotors in guinea-pig brain. Neuroscience 1988,25:259–269.

    PubMed  CAS  Google Scholar 

  80. Tran TT, de Costa BR, Matsumoto RR. Microinjection of sigma ligands into cranial nerve nuclei produces vacuous chewing in rats. Psychopharmacology 1998, 137: 191–200.

    PubMed  CAS  Google Scholar 

  81. Walker JM, Matsumoto RR, Bowen WD, Gans DL, Jones KD, Walker FO. Evidence for a role of haloperidol-sensitive o-‘opiate’ receptors in the motor effects of antipsychotic drugs. Neurology 1988, 38:961–965.

    PubMed  CAS  Google Scholar 

  82. Bastianetto S, Rouquier L, Perrault G, Sanger DJ. DTG-induced circling behaviour in rats may involve the interaction between σ sites and nigro-striatal dopaminergic pathways. Neuropharmacology 1995, 34:281–287.

    PubMed  CAS  Google Scholar 

  83. Goldstein SR, Matsumoto RR, Thompson TL, Patrick RL, Bowen WD, Walker JM. Motor effects of two sigma ligands mediated by nigrostriatal dopamine neurons. Synapse 1989,4:254–258.

    PubMed  CAS  Google Scholar 

  84. Patrick SL, Walker JM, Perkel JM, Lockwood M, Patrick RL. Increases in rat striatal extracellular doparnine and vacuous chewing produced by two σ receptor ligands. Eur J Pharmacol 1993,32:243–249.

    Google Scholar 

  85. Walker JM, Bowen WD, Patrick SL, William WE, Mascarella SW, Bai X, Carroll FI. A comparison of (-)-deoxybenzomorphans devoid of opiate activity with their dextrorotatory phenolic counterparts suggest role of σ2 receptors in motor function. Eur J Pharmacol 1993, 231:61–68.

    PubMed  CAS  Google Scholar 

  86. Matsumoto RR, Pouw B. Correlation between neuroleptic binding to σ1 and σ2 receptors and acute dystonic reactions. Eur J Pharmacol2000,401:155–160.

    PubMed  CAS  Google Scholar 

  87. Mash DC, Zabetian CP. Sigma receptors are associated with cortical limbic areas in the primate brain. Synapse 1992, 12:195–205.

    PubMed  CAS  Google Scholar 

  88. Jansen KLR, Faull RLM, Dragunow M, Leslie RA. Autoradiographic distribution of sigma receptors in human neocortex, hippocampus, basal ganglia, cerebellum, pineal and pituitary glands. Brain Res 1991b, 559: 172–177.

    PubMed  CAS  Google Scholar 

  89. Eisenberg RM. Plasma corticosterone changes in response to central or peripheral administration of kappa or sigma opiate agonists. J Pharmacol Exp Ther 1985, 223:863–869.

    Google Scholar 

  90. Aanonsen LM, Seybold VS. Phencyclidine and sigma receptors in rat spinal cord: Binding characterization and quantitative autoradiography. Synapse 1989,4:1–10.

    PubMed  CAS  Google Scholar 

  91. Zhang H, Cuevas J. Sigma receptors inhibit high-voltage-activated calcium channels in rat sympathetic and parasympathetic neurons. J Neurophysiol2002,87:2867–2879.

    PubMed  CAS  Google Scholar 

  92. Zhang H, Cuevas J. σ Receptor activation blocks potassium channels and depresses neuroexcitability in rat intracardiac neurons. J Pharmacol Exp Ther 2005, 313: 1387–1396.

    PubMed  CAS  Google Scholar 

  93. Ela C, Barg J, Vogel Z, Hasin Y, Eilam Y. Sigma receptor ligands modulate contractility, Ca++ influx and beating rate in cultured cardiac myocytes. J Pharmacol Exp Ther 1994,269:1300–1309.

    PubMed  CAS  Google Scholar 

  94. Kawamura K, Ishiwata K, Tajima H, Ishii S, Matsuno S, Homma Y, Senda M. In vivo evaluation of [11C]SA4503 as a PET ligand for mapping CNS sigma l receptors. Nucl Med Biol2000,27:255–261.

    PubMed  CAS  Google Scholar 

  95. Moebius FF, Burrows GG, hanner M, Schmid E, Striessnig J, Glossman H. Identification of a 27-kDa high affinity phenylalkylamine-binding polypeptide as the sigma1 binding site by photoaffmity labeling and ligand-directed antibodies. Mol Pharmacol 1993a, 44:966–971.

    PubMed  CAS  Google Scholar 

  96. Moebius FF, Burrows GG, Striessnig J, Glossman H. Biochemical characterization of a 22-kDa high affinity antiischemic drug-binding polypeptide in the endoplasmic reticulum of guinea pig liver: potential common target for antiischemic drug action. Mol Pharmacol 1993b, 43: 139–148.

    PubMed  CAS  Google Scholar 

  97. van Waarde A, Buursma AR, Hospers GA, Kawamura K, Kobayashi T, Ishii K, Oda K, Ishiwata K, Vaalburg W, Elsinga PH. Tumor imagining with two sigma receptor ligands, 18F-FE-sA5845 and 11c-SA4503: a feasibility study. J Nucl Med 2004,45:1939–1945.

    PubMed  Google Scholar 

  98. Basile AS, Paul IA, de Costa B. Differential effects of cytochrome P-450 induction on ligand binding to σ receptors. Eur J Pharmacol 1992,227:95–98.

    PubMed  CAS  Google Scholar 

  99. Jewell A, Wedlund P, Dwoskin L. Strain differences in rat brain and liver o binding: lack of cytochrome P450-2D1 involvement. Eur J Pharmacol 1993,243:249–254.

    PubMed  CAS  Google Scholar 

  100. Monnet FP, Debonnel G, de Montigny C. The cytochromes P-450 are not involved in the modulation of the N-methyl-D-aspartate response by sigma ligands in the rat CA3 dorsal hippocampus. Synapse 1993, 13:30–38.

    PubMed  CAS  Google Scholar 

  101. Kennedy C, Henderson G. An examination of the putative sigma-receptor in the mouse isolated vas deferens. Br J Pharmacol 1989,98:429–436.

    PubMed  CAS  Google Scholar 

  102. Su T-P, Wu XZ. Guinea pig vas deferens contains sigma but not phencyclidine receptors. Neurosci Lett 1990, 108:341–345.

    PubMed  CAS  Google Scholar 

  103. Wolfe SA Jr, Culp SG, De Souza EB. Sigma receptors in endocrine organs: identification, characterization, and autoradiographic localization in rat pituitary, adrenal, testis, and ovary. Endocrinology 1989, 124: 1160–1172.

    PubMed  CAS  Google Scholar 

  104. Paul IA, Basile AS, Rojas E, Youdim MBH, De Costa B, Skolnick P, Pollard HB, Kuijpers GAJ. Sigma receptors modulate nicotinic receptor function in adrenal chromafin cells. FASEB J 1993,7: 1171–1178.

    PubMed  CAS  Google Scholar 

  105. Brent PJ. Kappa opioid receptor agonists inhibit sigma-1 (σ1) receptor binding in guinea-pig brain, liver and spleen: autoradiographical evidence. Brain Res 1996,725:155–165.

    PubMed  CAS  Google Scholar 

  106. Harada Y, Hara H, Sukamoto T, Characterization of specific (+)-[3H]N-allylnormetazocine and [3H]1,3-di(2-tolyl)guanidine binding sites in porcine gastric fundic mucosa. J Pharmacol Exp Ther 1994,269:905–910.

    PubMed  CAS  Google Scholar 

  107. Hara H, Tanaka K, Harada Y, Sukamoto T. Sigma receptor-mediated effects of a new antiulcer agent, KB-5492, on experimental gastric mucosal lesions and gastric alkaline secretion in rats. J Pharmacol Exp Ther 1994,269:799–805.

    PubMed  CAS  Google Scholar 

  108. Roman F, Pascaud X, Chomette G, Bueno L, Junien JL. Autoradiographic localization of sigma opioid receptors in the gastrointestinal tract of the guinea pig. Gastroenterology 1989, 97:76–82.

    PubMed  CAS  Google Scholar 

  109. Shamsul Ola M, Moore P, El-Sherbeny A, Roon P, Aganval N, Sarthy VP, Casellas P, Ganapathy V, Smith SB. Expression pattern of sigma receptor 1 mRNA and protein in mammalian retina. Brain Res Mol Brain Res 2001,95:86–95.

    CAS  Google Scholar 

  110. Wang WF, Ishiwata K, Kiyosawa M, Kawamura K, Oda K, Kobayashi T, Matsuno K, Mochizuki M. Visualization of sigma, receptors in eyes by ex vivo autoradiography and in vivo positron emission tomography. Exp Eye Res 2002,75:723–730.

    PubMed  CAS  Google Scholar 

  111. Campana G, Bucolo C, Murari G, Spampinato S. Ocular hypotensive action of topical flunarizine in the rabbit: role of σ1 recognition sites. J Pharmacol Exp Ther 2002, 303:1086–1094.

    PubMed  CAS  Google Scholar 

  112. Martin PM, Shamsul Ola M, Agarwal N, Ganapathy V, Smith SB. The sigma receptor ligand (+)-pentazocine prevents apoptotic retinal ganglion cell death induced in vitro by homocysteine and glutamate. Brain Res Mol Brain Res 2004, 123:66–75.

    PubMed  CAS  Google Scholar 

  113. Senda T, Mita S, Kaneda K, Kikuchi M, Akaike A. Effect of SA4503, a novel σ1 receptor agonist, against glutamate neurotoxicity in cultured rat retinal neurons. Eur J Pharmacol 1998,342: 105–111.

    PubMed  CAS  Google Scholar 

  114. Paul R, Lavastre S, Floutard D, Floutard R, Canat X, Casellas P, Le Fur G, Breliere JC. Allosteric modulation of peripheral sigma binding sites by a new selective ligand: SR 31747. J Neuroimmunol 1994,52:183–192.

    PubMed  CAS  Google Scholar 

  115. Wolfe SA Jr, Kulsakdinun C, Battaglia G, Jaffe JH, De Souza EB. Initial identification and characterization of σ receptors on human peripheral blood leukocytes. J Pharmacol Exp Ther 1988,247:1114–1119.

    PubMed  CAS  Google Scholar 

  116. Bem WT, Thomas GE, Mamone JY, Homan SM, Levy BK, Johnson FE, Coscia CJ. Overexpression of sigma receptors in nonneuronal human tumors. Cancer Res 1991, 51:6558–6562.

    PubMed  CAS  Google Scholar 

  117. Mach RH, Smith CR, al-Nabulsi I, Whirrett BR, Childers SR, Wheeler KT. Sigma-2 receptors as potential biomarkers of proliferation in breast cancer. Cancer Res 1997, 57:156–161.

    PubMed  CAS  Google Scholar 

  118. Thomas GE, Szucs M, Mamone JY, Bem WT, Rush MD, Johnson FE, Coscia CJ. Sigma and opioid receptors in human brain tumors. Life Sci 1990,46:1279–1286.

    PubMed  CAS  Google Scholar 

  119. Wang B, R ouzier R, Albarracin CT, Sahin A, Wagner P, Yang Y, Smith TL, Meric-Bernstam F, Marcelo AC, Horobagyi GN, Pusztai L. Expression for sigma 1 receptor in human breast cancer. Breast Cancer Res Treat 2004,87:205–214.

    PubMed  CAS  Google Scholar 

  120. Wheeler KT, Wang LM, Wallen CA, Childers SR, Cline JM, Keng PC, Mach RH. Sigma-2 receptors as a biomarker of proliferation in solid tumours. Br J Cancer 2000, 82:1223–1232.

    PubMed  CAS  Google Scholar 

  121. Matsuno K, Nakazawa M, Okamoto K, Kawashima Y, Mita S. Binding properties of SA4503, a novel and selective σ, receptor agonist. Eur J Pharmacol 1996,306:271–179.

    PubMed  CAS  Google Scholar 

  122. Mach RH, Wu L, West T, Whirrett BR, Childers SR. The analgesic tropane analogue (±)-SM 21 has high affinity for σ2 receptors. Life Sci 1999,64:PL131–137.

    Google Scholar 

  123. Canoll PD, Smith PR, Gottesman S, Musacchio JM. Autoradiographic localization of [3H]dextromethorphan in guinea pig brain: allosteric enhancement by ropizine. J Neurosci Res 1989,24:31–328.

    Google Scholar 

  124. Elsinga PH, Kawamura K, Kobayashi T, Tsukada H, Senda M, Vaalburg W, Ishiwata K. Synthesis and evaluation of [18F]fluoroethyl SA4503 as a PET ligand for the sigma receptor. Synapse 2002,43:259–267.

    PubMed  CAS  Google Scholar 

  125. Graybiel AM, Besson M-J, Weber E. Neuroleptic-sensitive binding sites in the nigrostriatal system: Evidence for differential distribution of sigma sites in the substantia nigra, pars compacta of the cat. J Neurosci 1989,9:326–338.

    PubMed  CAS  Google Scholar 

  126. Heroux JA, Tam SW, De Souza EB. Autoradiographic identification and characterization of σ receptors in guinea pig brain using [3H]1(cyclopropylmethyl)-4-(2′-(411-fluoropheny1)-2′-oxoethy1)piperidine ([3H]DUP 734), a novel σ receptor ligand. Brain Res 1992, 598:76–86.

    PubMed  CAS  Google Scholar 

  127. Jansen JLR, Dragunow M, Faull RLM. Sigma receptors are highly concentrated in the rat pineal gland. Brain Res 1990, 507: 158–160.

    PubMed  CAS  Google Scholar 

  128. Jansen JLR, Dragunow M, Faull RLM, Leslie RA. Autoradiographic visualization of [3H]DTG binding to σ receptors, [3H]TCP binding sites, and L-[3H]glutamate binding to NMDA receptors in human cerebellum. Neurosci Lett 1991a 125:143–146.

    PubMed  CAS  Google Scholar 

  129. Jansen KLR, Faull RLM, Storey P, Leslie RA. Loss of sigma binding sites in the CAI area of the anterior hippocampus in Alzheimer’s disease correlates with CAI pyramidal cell loss. Brain Res 1993,623:299–302.

    PubMed  CAS  Google Scholar 

  130. Kawamura K, Ishiwata K, Tajima H, Ishii S, Shimada Y, Matsuno K, Homma Y, Senda M. Synthesis and in vivo evaluation of [11C]SA6298 as a PET sigma l receptor ligand. Nucl Med Biol 1999,26:915–922.

    PubMed  CAS  Google Scholar 

  131. Maruo J, Yoshida A, Shimohira I, Matsuno K, Mita S, Ueda H. Binding of [35S]GTPgS stimulated by (+)-pentazocine sigma receptor agonist, is abundant in guinea pig spleen. Life Sci 2000,67:599–603.

    PubMed  CAS  Google Scholar 

  132. Okuyama S, Chaki S, Yae T, Nakazato A, Muramatsu M. Autoradiographic characterization of binding sites for [3H]NE-100 in guinea pig brain. Life Sci 1995, 57:PL333–337.

    Google Scholar 

  133. Sircar R, Nichtenhauser R, Ieni JR, Zukin SR. Characterization and autoradiographic visualization of (+)-[3H]SKF10,047 binding in rat and mouse brain: Further evidence for phencyclidiner/11sigma opiate11 receptor commonality. J Pharmacol Exp Ther 1986, 257681–688.

    Google Scholar 

  134. Soby KK, Mikkelsen JD, Meier E, Thomsen C. Lu 28-179 labels a sigma2-site in rat and human brain. Neuropharmacology 2002,43:95–100.

    PubMed  CAS  Google Scholar 

  135. Ujike H, Akiyama K, Kuroda S. [3H]YM-09151-2 (nemonapride), a potent radioligand for both sigma-1 and sigma-2 receptor subtypes. Neuroreport 1996, 7: 1057–1061.

    PubMed  CAS  Google Scholar 

  136. Walker JM, Bowen WD, Goldstein SR, Roberts AH, Patrick SL, Hohmann AG, De Costa BR. Autoradiographic distribution of [3H](+)-pentazocine and [3H]1,3-di-otolylguanidine (DTG) binding sites in guinea pig brain: a comparative study. Brain Res 1992,581:33–38.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rae R. Matsumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Matsumoto, R.R. (2007). σ Receptors: Historical Perspective and Background. In: Su, TP., Matsumoto, R.R., Bowen, W.D. (eds) Sigma Receptors. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36514-5_1

Download citation

Publish with us

Policies and ethics