Skip to main content

Invariant NKT Cells and Immune Regulation in Multiple Sclerosis

  • Chapter
Immune Regulation and Immunotherapy in Autoimmune Disease
  • 736 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akbari, O., Stock, P., Meyer, E., et al. (2003) Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat. Med. 9:582–588.

    Article  PubMed  CAS  Google Scholar 

  • Akbari, O., Faul, J. L., Hoyte, E. G., et al. (2006) CD4+ invariant T-cell-receptor+ natural killer T cells in bronchial asthma. N. Engl. J. Med. 354:1117–1129.

    Article  PubMed  CAS  Google Scholar 

  • Araki, M., Kondo, T., Gumperz, J. E., et al. (2003) Th2 bias of CD4+ NKT cells derived from multiple sclerosis in remission. Int. Immunol. 15: 279–288.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Nun, A., Wekerle, H., Cohen, I. R. (1981) Vaccination against autoimmune encephalomyelitis with T-lymphocyte line cells against myelin basic protein. Nature 292:60–61.

    Article  PubMed  CAS  Google Scholar 

  • Bielekova, B., Goodwin, B., Richert, N., et al. (2000) Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat. Med. 6:1167–1175.

    Article  PubMed  CAS  Google Scholar 

  • Carnaud, C., Lee, D., Donnars, O., et al. (1999) Cross-Talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol. 163:4647–4650.

    PubMed  CAS  Google Scholar 

  • Chang, D. H., Osman, K., Connolly, J., et al. (2005) Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J. Exp. Med. 201:1503–1517.

    Article  PubMed  CAS  Google Scholar 

  • Chiba, A., Oki, S., Miyamoto, K., et al. (2004) Natural killer T-cell activation by OCH, a sphingosine truncated analogue of a-galactosylceramide, prevents collagen-induced arthritis. Arthritis Rheumatol. 50:305–313.

    Article  CAS  Google Scholar 

  • Chiba, A., Kaieda, S., Oki, S., et al. (2005) The involvement of Va14 natural killer T cells in the pathogenesis of arthritis in murine models. Arthritis Rheum. 52:1941–1948.

    Article  PubMed  CAS  Google Scholar 

  • Duarte, N., Stenstrom, M., Campino, S., et al. (2004) Prevention of diabetes in nonobese diabetic mice mediated by CD1d-restricted nonclassical NKT cells. J. Immunol. 173:3112–3118.

    PubMed  CAS  Google Scholar 

  • Gambineri, E., Torgerson, T. R., Ochs, H.D. (2003) Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr. Opin. Rheumatol. 15:430–435.

    Article  PubMed  CAS  Google Scholar 

  • Godfrey, D. I., Kronenberg, M. (2004). Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 114:1379–1388.

    PubMed  CAS  Google Scholar 

  • Godfrey, D. I., MacDonald, H. R., Kronenberg, M., et al. (2004) NKT cells: what’s in a name? Nat. Rev. Immunol. 4:231–237.

    Article  PubMed  CAS  Google Scholar 

  • Gumperz, J. E., Miyake, S., Yamamura, T., Brenner, M. B. (2002) Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J. Exp. Med. 195:625–636.

    Article  PubMed  CAS  Google Scholar 

  • Hong, S., Wilson, M. T., Serizawa, I., et al. (2001) The natural killer T-cell ligand a-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat. Med. 7:1052–1056.

    Article  PubMed  CAS  Google Scholar 

  • Hori, S., Nomura, T., Sakaguchi, T. (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1030–1031.

    Article  Google Scholar 

  • Illés, Z., Kondo, T., Newcombe, J., et al. (2000) Differential expression of natural killer T cell Va24JaQ invariant TCR chain in the lesions of multiple sclerosis and chronic inflammatory demyelinating polyneuropathy. J. Immunol. 164:4375–4381.

    PubMed  Google Scholar 

  • Jahng, A. W., Maricic, I., Pedersen, B., et al. (2001) Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J. Exp. Med. 194:1789–1799.

    Article  PubMed  CAS  Google Scholar 

  • Kawano, T., Cui, J., Koezuka, Y., et al. (1997) CD1d-restricted and TCR-mediated activation of Va14 NKT cells by glycosylceramides. Science 278:1626–1629.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H. Y., Kim, H. J., Min, H. S., et al. (2005) NKT cells promote antibody-induced joint inflammation by suppressing transforming growth factor beta1 production. J. Exp. Med. 201:41–47.

    Article  PubMed  CAS  Google Scholar 

  • Kinjo, Y., Wu, D., Kim, G., et al. (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434:520–525.

    Article  PubMed  CAS  Google Scholar 

  • Kohm, A. P., Carpentier, P. A., Anger, H. A., Miller, S. D. (2002) CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J. Immunol. 169:4712–4716.

    PubMed  CAS  Google Scholar 

  • Kronenberg, M., Gapin, L. (2002) The unconventional lifestyle of NKT cells. Nat. Immunol. 2:557–568.

    CAS  Google Scholar 

  • Kukreja, A., Cost, G., Marker, J., et al. (2002) Multiple immuno-regulatory defects in type-1 diabetes. J. Clin. Invest. 109:131–140.

    PubMed  CAS  Google Scholar 

  • Kyewski, B., Derbinski, J. (2004) Self-presentation in the thymus: an extended view. Nat. Rev. Immunol. 4:688–698.

    Article  PubMed  CAS  Google Scholar 

  • Kyewski, B., Klein, L. (2006) A central role for central tolerance. Annu. Rev. Immunol. 24:571–606.

    Article  PubMed  CAS  Google Scholar 

  • Lee, P. T., Benlagha, K., Teyton, L., Bendelac, A. (2002a) Distinct functional lineages of human Va24 natural killer T cells. J. Exp. Med. 195:637–641.

    Article  PubMed  CAS  Google Scholar 

  • Lee, P. T., Putnam, A., Benlagha, K., et al. (2002b) Testing the NKT cell hypothesis of human IDDM pathogenesis. J. Clin. Invest. 110:793–800.

    PubMed  CAS  Google Scholar 

  • Lehuen, A., Lantz, O., Beaudoin, L., et al. (1998) Overexpression of natural killer T cells protects Va14-Ja281 transgenic nonobese diabetic mice against diabetes. J. Exp. Med. 188:1831–1839.

    Article  PubMed  CAS  Google Scholar 

  • Mars, L. T., Laloux, V., Goude, K., et al. (2002) Va14-Ja281 NKT cells naturally regulate experimental autoimmune encephalomyelitis in nonobese diabetic mice. J. Immunol. 168:6007–6011.

    PubMed  CAS  Google Scholar 

  • Mattner, J., Debord, K. L., Ismail, N., et al. (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–529.

    Article  PubMed  CAS  Google Scholar 

  • Miyake, S., Yamamura T. (2005) Therapeutic potential of glycolipid ligands for natural killer (NK) T cells in the suppression of autoimmune diseases. Curr. Drug Targets Immune Endocr. Metabol. Disord. 5:315–322.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto, K., Miyake, S., Yamamura, T. (2001) A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413:531–534.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno, M., Masumura, M., Tomi, C., et al. (2004) Synthetic glycolipid OCH prevents insulitis and diabetes in NOD mice. J. Autoimmun. 23:293–300.

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi, Y., Tsutsumi, A., Goto, D., et al. (2005) TCR Va14 natural killer T cells function as effector T cells in mice with collagen-induced arthritis. Clin. Exp. Immunol. 141:47–53.

    Article  PubMed  CAS  Google Scholar 

  • Oikawa, Y., Shimada, A., Yamada, S., et al. (2002) High frequency of Va24+Vb11+ T-cells observed in type 1 diabetes. Diabetes Care 25:1818–1823.

    Article  PubMed  Google Scholar 

  • Oki, S., Chiba, A., Yamamura, T., Miyake, S. (2004) The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J. Clin. Invest. 113:1631–1640.

    PubMed  CAS  Google Scholar 

  • Oki, S., Tomi, C., Yamamura, T., Miyake, S. (2005) Preferential Th2 polarization by OCH is supported by incompetent NKT cell induction of CD40L and following production of inflammatory cytokines by bystander cells in vivo. Int. Immunol. 17:1619–1629.

    Article  PubMed  CAS  Google Scholar 

  • Pál, E., Tabira, T., Kawano, T., et al. (2001) Costimulation-dependent modulation of experimental autoimmune encephalomyelitis by ligand stimulation of Va14 NK T cells. J. Immunol. 166:662–668.

    PubMed  Google Scholar 

  • Panitch, H. S., Hirsch, R. L., Schindler, J., Johnson, K. P. (1987) Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology 37:1097–1102.

    PubMed  CAS  Google Scholar 

  • Sakaguchi, S. (2004) Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22:531–562.

    Article  PubMed  CAS  Google Scholar 

  • Sharif, S., Arreaza, G. A., Zucker, P., et al. (2001) Activation of natural killer T cells by a-galactosylceramide treatment prevents the onset and recurrence o autoimmune type 1 diabetes. Nat. Med. 7:1057–1062.

    Article  PubMed  CAS  Google Scholar 

  • Smiley, S. T., Kaplan, M. H., Grusby, M. J. (1997) Immunoglobulin E production in the absence of interleukin-4-secreting CD1-dependent cells. Science 275:977–979.

    Article  PubMed  CAS  Google Scholar 

  • Spada, F. M., Koezuka, Y., Porcelli, S. A. (1998) CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J. Exp. Med. 188:1529–1534.

    Article  PubMed  CAS  Google Scholar 

  • Sumida, T., Sakamoto, A., Murata, H., et al. (1995) Selective reduction of T cells bearing invariant Va24 J aQ antigen receptor in patients with systemic sclerosis. J. Exp. Med. 182:1163–1168.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K., Miyake, S., Kondo, T., et al. (2001) Natural killer type 2 (NK2) bias in remission of multiple sclerosis. J. Clin. Invest. 107:R23–R29.

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi, M., Harada, M., Kojo, S., et al. (2003) The regulatory role of Va14 NKT cells in innate and acquired immune response. Annu. Rev. Immunol. 21:483–513.

    Article  PubMed  CAS  Google Scholar 

  • Treiner, E., Duban, L., Bahram, S., et al. (2003) Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422:164–169.

    Article  PubMed  CAS  Google Scholar 

  • Ueno, Y., Tanaka, S., Sumii, M., et al. (2005) Single dose of OCH improves mucosal T helper type 1/T helper type 2 cytokine balance and prevents experimental colitis in the presence of valpha14 natural killer T cells in mice. Inflamm. Bowel Dis. 11:35–41.

    Article  PubMed  Google Scholar 

  • Van der Vliet, H. J., von Blomberg, B. M., Nishi, N., et al. (2001) Circulating Va24+Vb11+ NKT cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin. Immunol. 100 :144–148.

    Article  PubMed  Google Scholar 

  • Viglietta, V., Baecher-Allan, C., Weiner, H. L., Hafler, D. A. (2004) Loss of functional suppression by CD4 + CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199:971–979.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, S. B., Delovitch, T. L. (2003). Janus-like role of regulatory iNKT cells in autoimmune disease and tumor immunity. Nat. Rev. Immunol. 3:211–222.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, S. B., Kent, S. C., Patton, K. T., et al. (1998). Extreme Th1 bias of invariant Va24JaQ T cells in type 1 diabetes. Nature 391:177–181.

    Article  PubMed  CAS  Google Scholar 

  • Yamamura, T., Miyamoto, K., Illes, Z., et al. (2004) NKT cell-stimulating synthetic glycolipids as potential therapeutics for autoimmune disease. Curr. Top. Med. Chem. 4:561–567.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, D., Mattner, J., Cantu, C., 3rd, et al. (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–1789.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yamamura, T. (2007). Invariant NKT Cells and Immune Regulation in Multiple Sclerosis. In: Zhang, J. (eds) Immune Regulation and Immunotherapy in Autoimmune Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36003-4_8

Download citation

Publish with us

Policies and ethics