Skip to main content

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 40))

  • 1958 Accesses

Abstract

GRASP [[1]] is a system for the calculation of relativistic atomic structure and properties. Table 7.1 lists the main modules with a brief description of their functions1. The software implements the finite difference numerical methods of Chapter 6. Having defined a basis of CSFs, T, the user invokes the MCP module to compute the angular momentum coefficients t TT′ (±β), v K TT′ (±βγδ) of (6.10.2). The MCDF code generates Dirac radial spinors, either with the user’s choice of parametrized model potential or by solving the coupled DHF radial equations. It also generates the corresponding interaction integrals I(±β) and R K C (±βγδ) over the radial orbitals, and then assembles the Hamiltonian matrix H in the CSF basis using (6.10.2) and (6.10.3). The atomic state functions (ASF) are the eigenvectors of H, and its eigenvalues represent the atomic energy levels. If the transverse photon interaction, self-energy, and vacuum polarization corrections are to be calculated, then MCBP must be called to compute the coefficients v TT′ (ABCD) of (6.10.3), after which BENA calculates the radial integrals S (ABCD) and QED corrections and assembles the perturbed Hamiltonian H in the ASF basis of the DC Hamiltonian before rediagonalizing. This corrects the total energy of the atom and the CSF mixing coefficients, but leaves the orbitals unperturbed. The outputs can be applied to bound state properties, radiative transition amplitudes, or target wavefunctions for scattering calculations as described in the following chapters

There are several versions of the code in circulation, mostly referenced in [1]. GRASP2, which had a limited circulation, is a precursor of GRASP92 [2]. Downloads are accompanied by documentation files.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dyall K G, Grant I P, Johnson C T and Plummer E P 1989 Comput. Phys. Commun. 55, 425.

    Article  ADS  Google Scholar 

  2. Parpia F A, Fischer C F and Grant I P 1996 Comput. Phys. Commun. 94, 249.

    Article  ADS  Google Scholar 

  3. Davé J H, Feldman U, Seely J F, Wouters A, Suckewer S, Hinnov E and Schwob J L 1987 J. Opt. Soc. Am. B 4, 635.

    Article  ADS  Google Scholar 

  4. Levine M A, Marrs R E, Henderson J R, Knapp D A and Schneider M B 1988 Physica Scripta T22, 157.

    Article  ADS  Google Scholar 

  5. Norrington P H 1998, private communication.

    Google Scholar 

  6. Drake G W F ed 2005 Springer Handbook of Atomic, Molecular and Optical Physics Second edn (New York: Springer-Verlag).

    Google Scholar 

  7. Grant I P, Mayers D F and Pyper N C 1976 J. Phys. B 9, 2777.

    Article  ADS  Google Scholar 

  8. Fischer C F, Brage T and Jönsson P 1997 Computational Atomic Structure. An MCHF approach (Bristol and Philadelphia: Institute of Physics).

    Google Scholar 

  9. Deslattes R D, Kessler, Jr. E G, Indelicato P, deBilly L, Lindroth E and Anton J 2003 Rev. Mod. Phys. 75, 35.

    Article  ADS  Google Scholar 

  10. Indelicato P and Desclaux J P 1990 Phys. Rev. A 42, 5139.

    Article  ADS  Google Scholar 

  11. Blundell S A, Johnson, W R and Sapirstein J 1990 Phys. Rev. A 42, 3751.

    Article  ADS  Google Scholar 

  12. Thomas L H 1927 Proc. Camb. Phil. Soc. 23, 542.

    Article  MATH  Google Scholar 

  13. Fermi E 1928 Z. Physik 48, 73.

    Article  ADS  Google Scholar 

  14. Condon E U and Shortley G H 1953 The Theory of Atomic Spectra (Cambridge: University Press).

    Google Scholar 

  15. Klapisch M 1971 Comput Phys Commun 2, 239.

    Article  ADS  Google Scholar 

  16. Bar-Shalom A, Klapisch M and Oreg J 2001 J. Quant. Spectrosc. Rad. Transf. 71, 169.

    Article  ADS  Google Scholar 

  17. Eissner W, Jones M and Nussbaumer H 1974 Comput Phys Commun 8, 270.

    Article  ADS  Google Scholar 

  18. Koopmans T 1933 Physica 1, 104.

    Article  MATH  ADS  Google Scholar 

  19. Brillouin L 1932 J. Phys. Paris 3, 373.

    MATH  Google Scholar 

  20. Brillouin L 1933 Actualités Scienti.ques et Industrielles no. 71 (Paris: Hermann).

    Google Scholar 

  21. Bauche J and Klapisch M 1972 J. Phys. B: Atom. Molec. Phys. 5, 29.

    Article  ADS  Google Scholar 

  22. Labarthe J J 1972 J. Phys. B: Atom. Molec. Phys. 5,181.

    Google Scholar 

  23. Fischer C F 1977 The Hartree-Fock Method for Atoms (New York: John Wiley).

    Google Scholar 

  24. Fischer C F 1986 Computer Physics Reports 3, no. 5, 273.

    Article  ADS  Google Scholar 

  25. Grant I P and McKenzie B J 1980 J. Phys. B: Atom. Molec. Phys. 13, 2671.

    Article  ADS  MathSciNet  Google Scholar 

  26. Johnson W R and So. G 1985 At. Data Nucl. Data Tables 33, 485.

    Article  Google Scholar 

  27. Welton T A 1948 Phys. Rev. 74, 1174.

    Article  ADS  Google Scholar 

  28. Deslattes R D, Kessler, Jr. E G, Indelicato P, deBilly L, Lindroth E, Anton J, Coursey J, Schwab D J, Olsen K and Dragoset R A 2003 X-ray Transition Energies (version 1.0) [Online] Available http://physics.nist.gov/XrayTrans [2003, October 2] National Institute of Standards and Technology, Gaithersburg, MD.

    Google Scholar 

  29. Fullerton L W and Rinker, Jr., G A 1976 Phys. Rev. A 13, 1283.

    Article  ADS  Google Scholar 

  30. Mohr P J 1983 At. Data Nucl. Data Tables 29, 453.

    Article  ADS  Google Scholar 

  31. Mohr P J and Kim Y-K 1992 Phys. Rev. A 45 2727.

    Article  ADS  Google Scholar 

  32. Bearden J A and Burr A F 1967 Rev. Mod. Phys. 39, 125.

    Article  ADS  Google Scholar 

  33. Froese Fischer C 2005 in [Chapter 21, §21.5.3]handbook.

    Google Scholar 

  34. Olsen J, Roos B O, Jørgensen and Jensen H J Aa 1988 J. Chem. Phys, 89 2186.

    Article  ADS  Google Scholar 

  35. Ynnerman A and Froese Fischer C 1995 Phys. Rev. A 51, 2020.

    Article  ADS  Google Scholar 

  36. Froese Fischer C 1994 Physica Scripta 49, 323.

    Article  ADS  Google Scholar 

  37. Fleming J, Hibbert A and Stafford R P Physica Scripta 49, 316.

    Google Scholar 

  38. Kwong H S et al. 1993 Astrophys. J. 411, 431.

    Article  ADS  Google Scholar 

  39. Reistad N and Martinson I 1986 Phys. Rev. A 34, 2632.

    Article  ADS  Google Scholar 

  40. Brewer L 1971 J. Opt. Soc. Am. 61, 1101.

    Article  ADS  Google Scholar 

  41. Davidson E R 1975 J. Comput. Phys. 17, 87.

    Article  ADS  Google Scholar 

  42. Davidson E R 1989 Comput. Phys. Commun. 53, 49.

    Article  MATH  ADS  Google Scholar 

  43. Liu B 1978 in Numerical Algorithms in Chemistry: Algebraic Methods. (ed. Moler C and Shavitt I) (Lawrence Berkeley Laboratory).

    Google Scholar 

  44. Murray C W, Racine S C and Davidson E R 1992 J. Comput. Phys. 103, 382.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. Stathopoulos A and Froese Fischer C 1994 Comput. Phys. Commun. 79, 268.

    Article  MATH  ADS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Computation of atomic structures. In: Grant, I.P. (eds) Relativistic Quantum Theory of Atoms and Molecules. Springer Series on Atomic, Optical, and Plasma Physics, vol 40. Springer, New York, NY. https://doi.org/10.1007/978-0-387-35069-1_7

Download citation

Publish with us

Policies and ethics