Skip to main content

ENSO Signal Propagation Detected by Wavelet Coherence and Mean Phase Coherence Methods

  • Conference paper
Nonlinear Dynamics in Geosciences
  • 1459 Accesses

Abstract

We present observational evidence of the dynamic linkages between ENSO and Northern Hemisphere (NH) ice conditions over the past 135 years. Using Wavelet Transform (WT) we separate statistically significant components from time series and demonstrate significant co-variance and consistent phase differences between NH ice conditions and the Arctic Oscillation and Southern Oscillation indices (AO and SOI) at 2.2, 3.5, 5.7 and 13.9 year periods. To study the phase dynamics of weakly interacting oscillating systems we apply average mutual information and mean phase coherence methods. Phase relationships for the different frequency signals suggest that there are several mechanisms for distribution of the 2.2-5.7 year and the 13.9 year signals. The 2.2- 5.7 year signals, generated about three months earlier in the tropical Pacific Ocean, are transmitted via the stratosphere, and the Arctic Oscillation (AO) mediating propagation of the signals. In contrast the 13.9 year signal propagates from the western Pacific as eastward propagating equatorial coupled ocean waves, and then fast boundary waves along the western margins of the Americas to reach both polar regions, and has a phase difference of about 1.8-2.1 years by the time it reaches the Arctic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldwin, M.P. and Dunkerton, T.J. (2001) Stratospheric Harbingers of Anomalous Weather Regimes, Science,294, 581-584.

    Article  Google Scholar 

  • Castanheira, J.M. and Craf, H.-F. (2003) North Pacific-North Atlantic relationships under stratospheric control?, J. Geophys. Res., 108, 4036, 10.1029/2002JD002754.

    Article  Google Scholar 

  • Dickey, J.O., S.L. Marcus and Viron, O. (2003) Coherent interannual and decadal variations in the atmosphere-ocean system, Geophys. Res. Let,30, 2002GL016763.

    Article  Google Scholar 

  • Foufoula-Georgiou, E. and Kumar, K. (1995) Wavelets in Geophysics, Academic Press, 373.

    Google Scholar 

  • Gloersen, R. 1995. Modulation of hemispheric sea-ice cover by ENSO events, Nature, 373, 503-505.

    Article  Google Scholar 

  • Grinsted, A., J. C. Moore and Jevrejeva, S. (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series,Nonlinear Processes in Geophysics,11, 561-566.

    Google Scholar 

  • Huang, J., K. Higuchi and Shabbar, A. (1998) The relationship between the North Atlantic Oscillation and the ENSO, Geophys. Res. Let., 25, 2707-2710.

    Article  Google Scholar 

  • Jevrejeva, S. and Moore, J.C. (2001) Singular Spectrum Analysis of Baltic Sea ice conditions and large-scale atmospheric patterns since 1708, Geophys. Res. Let., 28, 4503-07.

    Article  Google Scholar 

  • Jevrejeva, S., J. C. Moore and Grinsted, A. (2003) Influence of the arctic oscillation and El Nino-Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: The wavelet approach, J. Geophys. Res., 108, 2003JD003417.

    Article  Google Scholar 

  • Jevrejeva, S., J.C. Moore and Grinsted, A. (2004) Oceanic and atmospheric transport of multi-year ENSO signatures to the polar regions. Geophys. Res. Lett., 31, L24210, doi:10.1029/2004GL020871.

    Article  Google Scholar 

  • Kaplan, A., M. A. Cane, Y. Kushnir, A.C. Clement, M.B. Blumenthal and Rajagopalan, B. (1998) Analyses of global sea surface temperature 1856-1991, J. Geophys. Res., 103, 18567-18589.

    Article  Google Scholar 

  • Merkel, U. and Latif, M. (2002) A high resolution AGCM study of the El Niño impact on the North Atlantic/European sector,Geophys. Res. Let., 29, 2001GLO13726.

    Article  Google Scholar 

  • Meyers, S.D., A. Melsom, G.T. Mitchum and O’Brien, J.J. (1998) Detection of the fast Kelvin waves teleconnection due to El Niño Southern Oscillation, J. Geophys. Res., 103, 27655-27663.

    Article  Google Scholar 

  • Mokhov, I. I. and Smirnov, D. A. (2006) El Niño–Southern Oscillation drives North Atlantic Oscillation as revealed with nonlinear techniques from climatic indices Geophys. Res. Lett., 33, L03708 10.1029/2005GL024557

    Article  Google Scholar 

  • Papoulis, A. (1984) Probability, Random Variables, and Stochastic Processes, second edition. New York: McGraw-Hill, (See Chapter 15.)

    Google Scholar 

  • Pozo-Vàzquez, D., M.J. Esteban-Parra, F.S. Rodrigo and Castro-Diez, Y. (2001) The association between ENSO and winter atmospheric circulation and temperature in the North Atlantic Region, J. Clim., 14, 3408-3420.

    Article  Google Scholar 

  • Ribera, P., and Mann, M. (2002) Interannual variability in the NCEP reanalysis 1948-1999, Geophys. Res. Let., 29, 2001GL013905.

    Article  Google Scholar 

  • Ropelewski, C.F., and Jones, P.D. (1987) An extension of the Tahiti-Darwin Southern Oscillation Index, Monthly Weather Review, 115, 2161-2165.

    Article  Google Scholar 

  • Seinä, A. and Palosuo, E. (1996) The classification of the maximum annual extent of ice cover in the Baltic Sea 1720-1995, Report series of the Finnish Institute of Marine Research No 27, 79-91.

    Google Scholar 

  • Smith, T.M. and Reynolds, R.W. (2003). Extended Reconstruction of Global Sea Surface Temperatures Based on COADS Data (1854-1997), J. Clim., 16, 1495-1510.

    Article  Google Scholar 

  • Thompson, D.W.J. and Wallace, J.M. (1998) The Arctic Oscillation signature in the winter geopotential height and temperature fields, Geophys. Res. Let., 25, 1297-1300.

    Article  Google Scholar 

  • Torrence, C. and Compo, G. P. (1998) A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., 79, 61–78.

    Article  Google Scholar 

  • Torrence, C. and Webster, P. (1999) Interdecadal Changes in the ENSO-Monsoon System, J.Clim., 12, 2679-2690.

    Article  Google Scholar 

  • Venegas, S.A. and Mysak, L.A. (2000) Is there a dominant timescale of natural climate variability in the Arctic?, J. Clim.,13, 3412-3434.

    Article  Google Scholar 

  • Venje, T. (2001) Anomalies and trends of sea ice extent and atmospheric circulation in the Nordic Seas during the period 1864-1998, J. Clim., 14, 255-267.

    Article  Google Scholar 

  • White, W.B., Y.M. Tourre, M. Barlow, and Dettinger, M. (2003) A delayed action oscillator shared by biennial, interannual, and decadal signals in the Pacific Basin, J. Geophys. Res., 108, 2002JC001490.

    Google Scholar 

  • White, W.B. and Tourre, Y. M. (2003) Global SST/SLP waves during the 20th century, Geophys. Res. Let, 30, 2003JL017055.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Jevrejeva, S., Moore, J., Grinsted, A. (2007). ENSO Signal Propagation Detected by Wavelet Coherence and Mean Phase Coherence Methods. In: Nonlinear Dynamics in Geosciences. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34918-3_10

Download citation

Publish with us

Policies and ethics