Skip to main content

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 218))

  • 708 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Frenkel: Die Elektrodynamik des rotierenden Elektrons. Z. Phys. 37:243–262 (1926)

    Article  ADS  Google Scholar 

  2. L. H. Thomas: The kinematics of an electron with an axis. Philos. Mag. 3(13):1–20 (1927)

    Google Scholar 

  3. H. Mendlowitz and K. M. Case: Phys. Rev. 97:33 (1955)

    Article  MATH  ADS  Google Scholar 

  4. V. Bargmann, L. Michel, and V. L. Telegdi: Precession of the polarization of particles moving in a homogeneous electro-magnetic field. Phys. Rev. Lett. 2(10):435–436 (1959)

    Article  ADS  Google Scholar 

  5. H. Rose: Hamiltonian magnetic optics. Nucl. Instr. Meth. A258:374–401 (1987)

    ADS  Google Scholar 

  6. G. H. Hoffstaetter: Nonlinear dependence of synchrotron radiation on beam parameters. In Proceedings of PAC95, Dallas (1995)

    Google Scholar 

  7. E. D. Courant and H. S. Snyder: Theory of the alternating-gradient synchrotron. Ann. Phys. 3:1–48 (1958)

    Article  MATH  ADS  Google Scholar 

  8. M. Berz: Computational aspects of optics design and simulation: COSY INFINITY. Nucl. Instr. Meth. A298:473–479 (1990)

    ADS  Google Scholar 

  9. Ya. S. Derbenev: The Stern-Gerlach method in charge particle storage rings (1) The double-resonance Stern-Gerlach effect. UM-HE-90-30, University of Michigan (1990)

    Google Scholar 

  10. Ya. S. Derbenev: The Stern-Gerlach method in charged particle storage rings (2) The neo-classical Stern-Gerlach effect. UM-HE-90-32, University of Michigan (1990)

    Google Scholar 

  11. Ya. S. Derbenev: Concepts for Stern-Gerlach polarization in storage rings. DESY Accelerator Physics Seminar (1995)

    Google Scholar 

  12. S. R. Mane: Exceptional orbits: a new class of spin trajectories in circular accelerators. Nucl. Instr. Meth. A 498:52–89 (2003)

    Article  ADS  Google Scholar 

  13. M. Conte, A. Penzo, and M. Pusterla: Spin splitting due to longitudinal Stern-Gerlach kicks. Nuovo Cimento, 108 A(1):127–136 (1995)

    ADS  Google Scholar 

  14. M. Conte, B. E. Norum, A. Penzo, M. Pusterla, and R. Rossmanith: A proposed test of the spin splitter effect in HERA-p. DESY-HERA-96-01 (1996)

    Google Scholar 

  15. A. Luccio: Numerical spin tracking in a synchrotron, computer code SPINK-examples and reference manual. BNL-52481, Brookhaven (1995)

    Google Scholar 

  16. V. Balandin, M. Berz, and N. Golubeva: Computation and analysis of spin dynamics. In Fourth Computational Accelerator Physics Conference, AIP Conference Proceedings 391, p. 276 (1996)

    ADS  Google Scholar 

  17. P. Nghiem and A. Tkatchenko: Simulation of proton spin motion in circular accelerators using one-turn spinor transfer maps. Nucl. Instr. Meth. A(335):3349–366 (1993)

    Google Scholar 

  18. S. Y. Lee: Spin dynamics and Snakes in synchrotrons. World Scientific (1997)

    Google Scholar 

  19. Bryan W. Montague: Polarized beams in high-energy storage rings. Physics Reports, 113(1):1–96 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  20. F. Z. Khiari, P. R. Cameron, G. R. Court, D. G. Crabb, et al: Acceleration of polarized protons to 22 GeV/c and the measurement of spin-spin effects in p + pp + p. Phys. Rev. D 39: 45–85 (1989)

    Article  ADS  Google Scholar 

  21. H. Huang, L. Ahrens, J. G. Alessi, M. Beddo, K. A. Brown, et al: Preservation of proton polarization by a partial Siberian Snake. Phys. Rev. Lett. 73:2982–2985 (1994)

    Article  ADS  Google Scholar 

  22. B. B. Blinov, C. M. Chu, E. D. Courant, D. A. Crandell, et al: First test of a partial Siberian Snake during polarized beam acceleration. Phys. Rev. Lett. 73(12):1621–1623 (1994)

    Article  ADS  Google Scholar 

  23. R. A. Phelps, V. A. Anferov, C. M. Chu, E. D. Courant, et al: Adiabatic partial Siberian Snake turn-on with no beam depolarization. Phys. Rev. Lett. 72(10):1479–1481 (1994)

    Article  ADS  Google Scholar 

  24. H. Huang, et al.: Polarized proton acceleration at the brookhaven AGS-an update. In Proceedings of EPAC02, Paris (2002)

    Google Scholar 

  25. D. P. Barber and A. De Roeck, editors: Proceedings of Polarized Protons at High Energies, DESY-Proceedings-1999-03 (1999)

    Google Scholar 

  26. T. Roser: RHIC spin program: machine aspects and recent progress. In [25].

    Google Scholar 

  27. T. Roser: private communication and “The Relativistic Heavy Ion Collidor Run-4 Polarized Proton Operation Web Log” (2004)

    Google Scholar 

  28. SPIN Collaboration and the DESY Polarization Team: Acceleration of polarized protons to 820 GeV at HERA. UM-HE-96-20, University of Michigan (1996)

    Google Scholar 

  29. A. W. Chao: Polarization of a stored electron beam. In Conference proceedings 87. US Particle Accelerator School, Batavia, USA, American Institute of Physics (1981)

    Google Scholar 

  30. A. W. Chao: Evaluation of radiative spin polarization in an electron storage ring. Nucl. Instr. Meth. 180:29 (1981)

    Article  Google Scholar 

  31. H. Mais and G. Ripken: Theory of spin-orbit motion in electron-positron storage rings. DESY-83-062 (1983)

    Google Scholar 

  32. P. Lochak and C. Meunier: Multiphase averaging for classical systems with applications to adiabatic theorems, volume 72 of Applied Mathematical sciences. Springer (1988)

    Google Scholar 

  33. V. I. Arnold, editor: Mathematical Aspects of Classical and Celestial Mechanics, Chapter 5, volume Dynamical Systems III of Encyclopedia of mathematical sciences; V. Springer (1988)

    Google Scholar 

  34. A. I. Neistadt: Passage through resonance in a two-frequency problem. Soviet Phys. Doklady, 20(3): 189–191, 1975. English translation of Doklady Akad. Nauk. SSSR Mechanics 221 (2), 301–304 (1975)

    MATH  ADS  Google Scholar 

  35. T. Roser: Polarized proton beam in the AGS. In Proceedings of SPIN98, Protvino (1998)

    Google Scholar 

  36. D. A. Crandell, V. A. Anferov, B. B. Bilinov, D. D. Caussyn, et al: Spin flipping through and intrinsic depolarizing resonance by strengthening it. Phys. Rev. Lett. 77(9):1763–1765 (1996)

    Article  ADS  Google Scholar 

  37. M. Bai, L. Ahrens, J. Alessi, K. Brown, G. Bunce, P. Cameron, et al: Overcoming intrinsic spin resonances with an rf dipole. Phys. Rev. Lett. 80(21):4673–4676 (1998)

    Article  ADS  Google Scholar 

  38. Ya. S. Derbenev and A. M. Kondratenko: Acceleration of polarized particles. Sov. Phys. Doklady, 20: 562, 1976. also in Russian.: Dokl. Akad. Nauk Ser. Fiz. 223:830–833 (1975)

    ADS  Google Scholar 

  39. Ya. S. Derbenev, A. M. Kondratenko, S. I. Serednyakov, et al: Radiative polarization: obtaining, control, using. Particle Accelerators, 8:115–126 (1978)

    Google Scholar 

  40. Ya. S. Derbenev and A. M. Kondratenko: On the possibilities to obtain high-energy polarized particles in accelerators and storage rings. In G. H. Thomas, editor, High-energy Physics with Polarized Beams and Polarized Targets, AIP Conference Proceedings 51, p. 292 (1978)

    Google Scholar 

  41. A. D. Krisch, S. R. Mane, R. S. Raymond, T. Roser, et al: First test of the Siberian Snake magnet arrangement to overcome depolarizing resonances in a circular accelerator. Phys. Rev. Lett. 63(11): 1137–1140 (1989)

    Article  ADS  Google Scholar 

  42. A. Luccio and T. Roser, editors: Third workshop on Siberian Snakes and spin rotators. BNL-52453, Brookhaven (1994)

    Google Scholar 

  43. J. E. Goodwin, H-O. Meyer, M. G. Minty, P. V. Pancella, et al: Overcoming intrinsic and synchrotron depolarizing resonances with a Siberian Snake. Phys. Rev. Lett. 64(23):2779–2782 (1990)

    Article  ADS  Google Scholar 

  44. V. Anferov: Siberian Snake design for a high-energy ring. In [25].

    Google Scholar 

  45. V. Ranjbar et al.: Snake calibration in RHIC. In Proceedings to EPAC02, Paris (2002)

    Google Scholar 

  46. V. Ranjbar et al.: Fitting helical snake and rotator field strength measurements in RHIC. In Proceedings to PAC01, Chicago (2001)

    Google Scholar 

  47. V. I. Ptitsin and Yu. M. Shatunov: Helical spin rotators and snakes. In Proc. 3. Workshop on Siberian Snakes and Spin Rotators, BNL-52453:15, Brookhaven (1994)

    Google Scholar 

  48. G. H. Hoffstaetter: Polarized protons in HERA. In DESY-96-05 (1996)

    Google Scholar 

  49. G. H. Hoffstaetter: Snake matching. In UM-HE 99-05, University of Michigan (1999)

    Google Scholar 

  50. K. Steffen: Strong spin matching with and without snakes, a scheme for preserving polarization in large ring accelerators. DESY-88-068 (1988)

    Google Scholar 

  51. V. A. Anferov: Spin transparent interaction regions for HERA. Nucl. Instr. Meth. A398(2–3): 423–425 (1997)

    ADS  Google Scholar 

  52. D. P. Barber, G. H. Hoffstaetter, and M. Vogt: Spin motion at high energy in HERA-p. In UM-HE 99-05, University of Michigan (1999)

    Google Scholar 

  53. SPIN Collaboration and the DESY Polarization Team: Acceleration of polarized protons to 920 GeV at HERA. UM-HE-99-05, University of Michigan (1999)

    Google Scholar 

  54. H. Poincaré: Les méthodes nouvelles de la méchanique céleste. Gauthier-Villars, Paris, 1892, 1893, 1899. three volumes.

    Google Scholar 

  55. Ya. S. Derbenev and A. M. Kondratenko: Diffusion of particle spin in storage rings. Sov. Phys. JETP, 35:230 (1972)

    ADS  Google Scholar 

  56. D. P. Barber: Prospects for polarized protons at HERA. In conference on the spin structure of the nucleon at Erice in 1995, World Scientific (1998)

    Google Scholar 

  57. D. P. Barber, K. Heinemann, G. H. Hoffstaetter, and M. Vogt: The phase space dependent spin polarization direction in the HERA proton ring at high energy. In Proceedings to EPAC96, Siges/Spain and DESY-M-96-14 (1996)

    Google Scholar 

  58. K. Yokoya: On multiple Siberian Snakes. SSC-189, SSC Central Design Group (1988)

    Google Scholar 

  59. K. Yokoya: The action-angle variables of classical spin motion in circular accelerators. DESY-86-057 (1986)

    Google Scholar 

  60. K. Yokoya: Calculation of the equilibrium polarization of stored electron beams using Lie algebra. Nucl. Instr. Meth. A258:149–160 (1987)

    ADS  Google Scholar 

  61. K. Yokoya: Non-perturbative calculation of equilibrium polarization of stored electron beams. KEK-92-6, Tsukuba (1992)

    Google Scholar 

  62. S. R. Mane: Electron-spin polarization in high-energy storage rings. II. Evaluation of the equilibrium polarization. Phys. Rev. A(36):120–130 (1987)

    Google Scholar 

  63. S. R. Mane: Polarization of electron beams in high-energy storage rings. 1: convergence of perturbation theory. Nucl. Instr. Meth. A321:21–41 (1992)

    ADS  Google Scholar 

  64. D. P. Barber, K. Heinemann, and G. Ripken: Notes on spin dynamics in storage rings. DESY-M-92-04 (1992)

    Google Scholar 

  65. V. Balandin and N. Golubeva: Hamiltonian methods for the study of polarized proton beam dynamics in accelerators and storage rings. DESY-98-016 (1998)

    Google Scholar 

  66. Yu. Eidelman and V. Yakimenko: The application of Lie methods to the spin motion in nonlinear collider fields. Particle Accelerators, 45:17–35 (1994)

    Google Scholar 

  67. V. Balandin and N. Golubeva: Nonlinear spin dynamics. Proceedings of the XV International Conference on High-energy Particle Accelerators, Hamburg, p. 998–1000 (1992)

    Google Scholar 

  68. M. Berz: Differential Algebraic Description and Analysis of Spin Dynamics, volume 343 of AIP Conference Proceedings, p. 321–327 (1995)

    Google Scholar 

  69. D. P. Barber, G. H. Hoffstaetter and M. Vogt: Polarized protons in HERA. In Proceedings to EPAC02, Paris and DESY-M-02-01 (2002)

    Google Scholar 

  70. D. P. Barber, M. Vogt, and G. H. Hoffstaetter: The amplitude-dependent spin tune and the invariant spin field in high-energy proton accelerators. In Proceedings EPAC98, Stockholm (1998)

    Google Scholar 

  71. D. P. Barber, G. H. Hoffstaetter, and M. Vogt: The amplitude-dependent spin tune and the invariant spin field in high-energy proton accelerators. In Proceedings SPIN98, Protvino (1998)

    Google Scholar 

  72. M. Vogt: Bounds on the maximum attainable equilibrium spin polarization of protons in HERA. Dissertation, Universitat Hamburg, DESY-THESIS-2000-054 (December 2000)

    Google Scholar 

  73. J. Moser: Lectures on Hamiltonian systems. Mem. Am. Math. Soc. 81, p. 60 (1968)

    Google Scholar 

  74. J. W. S. Cassels: An introduction to the theory of Diophantine approximation. Cambridge University Press, Cambridge U.K. (1957)

    Google Scholar 

  75. D. P. Barber, R. Jaganathan, M. Vogt: Spin tune in the single resonance model with a pair of Siberian Snakes. DESY-05-035 and ArXiv:physics/0502121 (2005)

    Google Scholar 

  76. A. I. Neistadt: Averaging in multi-frequency systems. Soviet Phys. Doklady, 20(7):492–494, 1976. English translation of Doklady Akad. Nauk. SSSR Mechanics 223 (2), 314–317 (1976)

    ADS  Google Scholar 

  77. G. H. Hoffstaetter, H. S. Dumas and J. A. Ellison: Adiabatic invariants for spin-orbit motion. In Proceedings to EPAC02, Paris and DESY-M-02-01 (2002)

    Google Scholar 

  78. G. H. Hoffstaetter, H. S. Dumas and J. A. Ellision Phys. Rev. ST-AB, 8, 014001 (2006)

    Google Scholar 

  79. K. Abragam: The principles of nuclear magnetism. Clarendon (1961)

    Google Scholar 

  80. S. R. Mane: Exact solution of the Derbenev-Kondratenko n-axis for a model with one resonance. FERMILAB-TM-1515 (1988)

    Google Scholar 

  81. K. Heinemann and G. H. Hoffstaetter: A tracking algorithm for the stable spin polarization field in storage rings using stroboscopic averaging. Phys. Rev. E 54:4240–4255 (1996)

    Article  ADS  Google Scholar 

  82. S. R. Mane: Exact solutions for the spin tune for model storate rings. Nucl. Instr. Meth. A480: 328–338 (2002)

    ADS  Google Scholar 

  83. S. R. Mane: Analytical solutions for the invariant spin field for model storage rings. Nucl. Instr. Meth. A485:277–297 (2002)

    ADS  Google Scholar 

  84. S. R. Mane: MILES: a new nonperturbative formalism to calculate the invariant spin field in circular accelerators. Nucl. Instr. Meth. A498:1–15 (2003)

    ADS  Google Scholar 

  85. M. Froissart and R. Stora: Depolarisation d’un faisceau de protons polarises dans un synchrotron. Nucl. Instr. Meth. 7:297–305 (1960)

    Article  Google Scholar 

  86. E. D. Courant and R. D. Ruth: The acceleration of polarized protons in circular accelerators. BNL-51270 and UC-28 and ISA-80-5 (1980)

    Google Scholar 

  87. M. F. Schlesinger: The wonderful world of stochastics. Studies in statistical mechanics 12. North-Holland, p. 382 (1985)

    Google Scholar 

  88. S. R. Mane: Approximate formula for the asymptotic polarization for passage across two overlapping spin resonances. Nucl. Instr. Meth. A524:80–91 (2004)

    ADS  Google Scholar 

  89. S. Y. Lee and S. Tepikian: Resonance due to a local spin rotator in high-energy accelerators. Phys. Rev. Lett. 56(16):1635–1638 (1986)

    Article  ADS  Google Scholar 

  90. S. Y Lee: Spin-depolarization mechanisms due to overlapping spin resonances in synchrotrons. Phys. Rev. E 47(5):3631–3644 (1993)

    ADS  Google Scholar 

  91. V. Ptitsin and Yu. M. Shatunov: The investigation of spin resonances in an accelerator with Siberian Snakes. In C. W. de Jager, T. J. Ketel, P. J. Mulders, J. E. J. Oberski, and M. Oskam-Tamoezer, editors, Proceedings SPIN96, p. 516–518. World Scientific (1996)

    Google Scholar 

  92. G. H. Hoffstaetter, Future possibilities for HERA, In Proceedings EPAC00, Vienna (2000)

    Google Scholar 

  93. G. H. Hoffstaetter and M. Vogt: SPRINT users guide and reference manual. DESY (2002)

    Google Scholar 

  94. M. Vogt, D. P. Barber, and G. H. Hoffstaetter: Introduction to the invariant spin field and update on simulations with polarized protons at HERA-p. In DESY-HERA-98-04 (1998)

    Google Scholar 

  95. L. V. Alexeeva, V. A. Anferov, D. D. Caussyn, C. M. Chu, et al: Observation of a second-order spin-depolarizing resonance. Phys. Rev. Lett. 75(10):1931–1933 (1995)

    Article  ADS  Google Scholar 

  96. V. Balandin, N. Golubeva, and D. P. Barber: Studies of the behavior of proton spin motion in HERA-p at high energies. DESY-M-96-04 (1996)

    Google Scholar 

  97. D. P. Barber, K. Heinemann, G. H. Hoffstaetter, and M. Vogt: The permissible equilibrium polarization distribution in a stored proton beam. In ICFA Proceedings Quantum Aspects of Beam Physics, World Scientific (1998)

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2006). Spin Dynamics. In: High-Energy Polarized Proton Beams. Springer Tracts in Modern Physics, vol 218. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34754-7_2

Download citation

Publish with us

Policies and ethics