Skip to main content

Small-Scale Self-focusing

  • Chapter
Self-focusing: Past and Present

Part of the book series: Topics in Applied Physics ((TAP,volume 114))

Abstract

At high enough power, a beam propagating in a positive n 2 material will spontaneously break up into multiple filaments as a result of a transverse modulational instability. This chapter briefly surveys the essential physics, presents a linearized theory and summarizes experimental examples illustrating the dependence between optimal spatial frequency, gain coefficient, self-focusing length, beam intensity, and beam shape. A number of applications are discussed as well as the impact of this field on other scientific disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.L. Kelley: Self-focusing of optical beams, Phys. Rev. Lett. 15, 1005–1008 (1965).

    Article  ADS  Google Scholar 

  2. V.I. Talanov: Self-focusing of wave beams in nonlinear media, JETP Lett. 2, 138–141 (1965).

    ADS  Google Scholar 

  3. M. Hercher: Laser-induced damage in transparent media, J. Opt. Soc. Am. 54, 563–570 (1964).

    Google Scholar 

  4. P. Lallemand, N. Bloembergen: Self-focusing of laser beams and stimulated Raman gain in liquids, Phys. Rev. Lett. 15, 1010–1012 (1965).

    Article  ADS  Google Scholar 

  5. E. Garmire, R.Y. Chiao, C.H. Townes: Dynamics and characteristics of the self-trapping of intense light beams, Phys. Rev. Lett. 16, 347–349 (1966).

    Article  ADS  Google Scholar 

  6. Y.R. Shen: Self-focusing: experimental, Prog. Quant. Electr. 4, 1–34 (1975).

    Article  ADS  Google Scholar 

  7. J.H. Marburger: Self-focusing: theory, Prog. Quant. Electr. 4, 35–110 (1975).

    Article  ADS  Google Scholar 

  8. R.Y. Chiao, M.A. Johnson, S. Krinsky et al.: A new class of trapped light filaments, IEEE J. Quant. Elec. 2, 467–469 (1966).

    Article  ADS  Google Scholar 

  9. V.I. Bespalov, V.I. Talanov, Filamentary structure of light beams in nonlinear liquids. JETP Lett. 3, 307–310 (1966).

    ADS  Google Scholar 

  10. K.A. Bruekner, S. Jorna: Linear instability theory of laser propagation in fluids, Phys. Rev. Lett. 17, 78–81 (1966).

    Article  ADS  Google Scholar 

  11. B.R. Suydam: Self-focusing of very powerful laser beams. in Laser-Induced Damage in Optical Materials, A.J. Glass, A.H. Guenther (Eds.), National Bureau of Standards Special Publ. 387, 42–48 (1973).

    Google Scholar 

  12. B.R. Suydam: Self-focusing of very powerful laser beams II, IEEE J. Quant. Elec. 10, 837–843 (1974).

    Article  ADS  Google Scholar 

  13. B.R. Suydam: Effect of refractive-index nonlinearity on the optical quality of high-power laser beams, IEEE J. Quant. Elec. 11, 225–230 (1975).

    Article  ADS  Google Scholar 

  14. R. Jokipii, J. Marburger: Homogeniety requirements for minimizing self-focusing damage by strong electromagnetic waves, Appl. Phys. Lett. 23, 696–698 (1973).

    Article  ADS  Google Scholar 

  15. J.A. Fleck, J.R. Morris, E.S. Bliss: Small-scale self-focusing effects in a high-power glass laser amplifier, IEEE J. Quant. Elec. 14, 353–363 (1978).

    Article  ADS  Google Scholar 

  16. S.C. Abbi, N.C. Kothari: Theory of filament formation in self-focusing media, Phys. Rev. Lett. 43, 1929–1931 (1979).

    Article  ADS  Google Scholar 

  17. S.C. Abbi, N.C. Kothari: Growth of Gaussian instabilities in Gaussian laser beams, J. Appl. Phys. 5, 1385–1387 (1980).

    Article  ADS  Google Scholar 

  18. R.Y. Chiao, P.L. Kelley, E. Garmire: Stimulated four-photon interaction and its influence on stimulated Rayleigh-wing scattering, Phys. Rev. Lett. 17, 1158–1160 (1966).

    Article  ADS  Google Scholar 

  19. S.C. Abbi, H. Mahr: Correlation of filaments in nitrobenzene with laser spikes, Phys. Rev. Lett. 26, 604–606 (1971).

    Article  ADS  Google Scholar 

  20. Yu.S. Chilingarian: Self-focusing of inhomogeneous laser beams and its effect on stimulated scattering, Sov Phys. JETP 28, 832–835 (1969).

    ADS  Google Scholar 

  21. S.C. Abbi, H. Mahr: Optical filament formation in nitrobenzene from laser intensity inhomogenieties, Appl. Phys. Lett. 19, 415–417 (1971).

    Article  ADS  Google Scholar 

  22. A.J. Campillo, S.L. Shapiro, B.R. Suydam: Periodic breakup of optical beams due to self-focusing, Appl. Phys. Lett. 23, 628–630 (1973).

    Article  ADS  Google Scholar 

  23. A.J. Campillo, S.L. Shapiro, B.R. Suydam: Relationship of self-focusing to spatial instability modes, Appl. Phys. Lett. 24, 178–180 (1974).

    Article  ADS  Google Scholar 

  24. E.S. Bliss, D.R. Speck, J.F. Holzrichter et al.: Propagation of a high-intensity laser pulse with small-scale intensity modulation; Appl. Phys. Lett. 25, 448–450 (1974).

    Article  ADS  Google Scholar 

  25. R.L. Carman, R.Y. Chiao, P. L. Kelley: Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification, Phys. Rev. Lett. 17, 1281–1283 (1966).

    Article  ADS  Google Scholar 

  26. A.J. Campillo, J.E. Pearson, S.L. Shapiro et al..: Fresnel diffraction effects in the design of high-power laser systems, Appl. Phys. Lett. 23, 85–87 (1973).

    Article  ADS  Google Scholar 

  27. A.E. Siegman: Small-scale self-focusing effects in tapered optical beams, Memo for File, www.stanford.edu/˜siegman/self_focusing_memo.pdf, 1–13 (2002).

  28. A.H. Paxton, G.C. Dente: Filament formation in semiconductor laser gain regions, J. Appl. Phys. 70, 2921–2925 (1991).

    Article  ADS  Google Scholar 

  29. M. Tamburrini, L. Goldberg, D. Mehuys: Periodic filaments in reflective broad area semiconductor optical amplifiers, Appl. Phys. Lett. 60, 1292–1294 (1992).

    Article  ADS  Google Scholar 

  30. L. Goldberg, M.R. Surette, D. Mehuys: Filament formation in a tapered GaAlAs optical amplifier, Appl. Phys. Lett. 62, 2304–2306 (1993).

    Article  ADS  Google Scholar 

  31. R.L. Lang, D. Mehuys, A. Hardy et al.: Spatial evolution of filaments in broad area diode laser amplifiers, Appl. Phys. Lett. 62 1209–1211 (1993).

    Article  ADS  Google Scholar 

  32. R.L. Lang, D. Mehuys, D.F. Welch et al.: Spontaneous filamentation in broad-area diode laser amplifiers, IEEE J. Quant. Elec. 30, 685–694 (1994).

    Article  ADS  Google Scholar 

  33. S.A. Akhmanov, R.V. Khokhlov, A.P. Sukhorukov: Self-focusing, self-defocusing and self-modulation of laser beams. In: Laser Handbook, F.T. Arecchi, E.O. Schulz-Dubois (Eds.), North-Holland, 2, E3, 1151–1228 (1972).

    Google Scholar 

  34. D.T. Attwood, E.S. Bliss, E.L. Pierce et al.: Laser frequency doubling in the presence of small-scale beam breakup, IEEE J. Quant. Elec. 12, 203–204 (1976).

    Article  ADS  Google Scholar 

  35. J. Bunkenberg, J. Boles, D.C. Brown et al.: The Omega high power phosphate–glass system; design and performance, IEEE J. Quant. Elec. 17, 1620–1628 (1981).

    Article  ADS  Google Scholar 

  36. K.D. Moll, A.L. Gaeta: Role of dispersion in multiple-collapse dynamics, Opt. Lett. 29, 995–997 (2004).

    Article  ADS  Google Scholar 

  37. K. Konno, H. Suzuki: Self-focusing of laser beam in nonlinear media, Phys. Scripta 20, 382–386 (1979).

    Article  ADS  Google Scholar 

  38. M.D. Feit, J.A. Fleck: Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams, J. Opt. Soc. Am. B 5, 633–640 (1988).

    Article  ADS  Google Scholar 

  39. J.M. Soto-Crespo, D.R. Heatley, E.M. Wright et al.: Stability of the higher-bound states in a saturable self-focusing medium, Phys. Rev. A 44, 636–644 (1991).

    Article  ADS  Google Scholar 

  40. J.M. Soto-Crespo, E.M. Wright, N.N. Akhmediev: Recurrence and azimuthal-symmetry breaking of a cylindrical Gaussian beam in a saturable self-focusing medium, Phys. Rev. A 45, 3168–3175 (1992).

    Article  ADS  Google Scholar 

  41. P.L. Kelley: The nonlinear index of refraction and self-action effects in optical propagation, IEEE J. Select Topics Quant. Elec. 6, 1259–1264 (2000).

    Article  Google Scholar 

  42. G. Fibich, B. Ilan: Deterministic vectorial effects lead to multiple filamentation, Opt. Lett. 26, 840–842 (2001).

    Article  ADS  Google Scholar 

  43. G. Fibich, B. Ilan: Vectorial effects in self-focusing and in multiple filamentation, Physica D, 157, 112–146 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. L. Berge, C. Gouedard, J. Schjodt-Eriksen et al.: Filamentation patterns in Kerr meadia vs. beam shape robustness, nonlinear saturation, and polarization states, Physica D 176, 181–211 (2003).

    Article  MATH  ADS  Google Scholar 

  45. G. Fibich, S. Eisenmann, B. Ilan et al.: Control of multiple filamentation in air, Opt. Lett. 29, 1772–1774 (2004).

    Article  ADS  Google Scholar 

  46. G. Fibich, S. Eisenmann, B. Ilan et al.: Self-focusing distance of very high power laser pulses. Opt. Express 13, 5897–5903 (2005).

    Article  ADS  Google Scholar 

  47. T.D. Grow, A.L. Gaeta: Dependence of multiple filamentation on beam ellipticity, Opt. Express 13, 4594–4599 (2005).

    Article  ADS  Google Scholar 

  48. J. Garnier: Statistical analysis of noise-induced multiple filamentation, Phys. Rev. E 73, 046611–1–046611-11 (2006).

    Article  ADS  Google Scholar 

  49. T.D. Grow, A.A. Ishaaya, L.T. Vuong et al.: Collapse dynamics of super-Gaussian beams, Opt. Express, 14, 5468–5475 (2006).

    Article  ADS  Google Scholar 

  50. G. Fibich, Y. Sivan, Y. Erlich et al.: Control of the collapse distance in atmospheric propagation, Opt. Express 14, 4946–4957 (2006).

    Article  ADS  Google Scholar 

  51. K.D. Moll, A.L. Gaeta, G. Fibich: Self-similar optical wave collapse: Observation of the Townes profile, Phys. Rev. Lett. 90, 203902-1–203902-4 (2003).

    Article  ADS  Google Scholar 

  52. V.R. Costich, B.C. Johnson: Apertures to shape-high power laser beams, Laser Focus 10 (9), 43–46 (1974).

    Google Scholar 

  53. W.W. Simmons, W.F. Hagen, J.T. Hunt et al.: Performance improvements through image relaying, Laser Program Annual Report, 1976, UCRL-50021-76, Part 2-1.4, pp 2-19–2-28, LLNL (1977).

    Google Scholar 

  54. D.C. Brown: High-peak-power lasers, Springer, New York (1981).

    Google Scholar 

  55. V.I. Kryzhanovskii, B.M. Sedov, V.A. Serebryakov et al.: Formation of the spiral structure of radiation in solid-state laser systems by apodizing and hard apertures, Sov. J. Quant. Electron. 13, 194–198 (1983).

    Article  ADS  Google Scholar 

  56. L.T. Vuong, T.D. Grow, A. Ishaaya et al.: Collapse of optical vortices, Phys. Rev. Lett. 96, 133901-1–133901-4 (2006).

    Article  ADS  Google Scholar 

  57. S.G. Lukishova, I.K. Krayuk, P.P. Pashinin et al.: Apodization of light beams as a method of brightness enhancement in neodymium glass laser installations. In: Formation and Control of Optical Wave Fronts, Proc. of the General Physics Institute of the USSR Academy of Science, P.P. Pashinin, Ed., 7, 92–147, Nauka Publ., Moscow (1987).

    Google Scholar 

  58. E.W.S. Hee: Fabrication of apodized apertures for laser beam attenuation, Opt. Laser Technol. 7(2), 75–79 (1975).

    Article  ADS  Google Scholar 

  59. A.J. Campillo, B. Carpenter, B.E. Newman et al.: Soft apertures for reducing damage in high-power laser systems, Opt. Comm. 10, 313–315 (1974).

    Article  ADS  Google Scholar 

  60. A.J. Campillo, S.L. Shapiro: Toward control of self-focusing, Laser Focus 10 (6), 62–65 (1974).

    Google Scholar 

  61. J. Auerbach, V. Karpenko: Serrated-aperture apodizers for high-energy laser systems, Appl. Opt. 33, 3179–3183 (1994).

    Article  ADS  Google Scholar 

  62. Y. Kato, K. Mima, S. Aringa et al.: Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression, Phys. Rev. Lett. 53, 1057–1060 (1984).

    Article  ADS  Google Scholar 

  63. N.K. Moncur: Plasma spatial filter, Appl. Opt. 16, 1449–1451 (1977).

    Article  ADS  Google Scholar 

  64. A.J. Campillo, R.A. Fisher, R.C. Hyer et al.: Streak camera investigation of the self-focusing onset in glass, Appl. Phys. Lett. 25, 408–410 (1974).

    Article  ADS  Google Scholar 

  65. G.H. Miller, E.I. Moses, C.R. Wuest: The national ignition facility: Enabling fusion ignition for the 21st century, Nucl. Fusion 44, S228–S238 (2004).

    Article  ADS  Google Scholar 

  66. J. Kasparian, M. Rodriguez, G. Mejean et al.: White-light filaments for atmospheric analysis, Science 301, 61–64 (4 July 2003).

    Article  ADS  Google Scholar 

  67. A.L. Gaeta: Catastrophic collapse of ultrashort pulses, Phys. Rev. Lett. 84, 3582–3584 (2000).

    Article  ADS  Google Scholar 

  68. A. Couairon, L. Birge: Light filaments in air for ultraviolet and infrared wavelengths, Phys. Rev. Lett. 88, 135003-1–135003-4 (2002).

    Article  ADS  Google Scholar 

  69. J. Schwarz, P. Rambo, J.-C. Diels et al.: Ultraviolet filamentation in air, Oct. Comm. 180, 383–390 (2000).

    Article  ADS  Google Scholar 

  70. M. Rodriguez, R. Sauerbrey, H. Wille et al.: Triggering and guiding megavolt discharges by use of laser-induced ionized filaments, Opt. Lett. 27, 772–775 (2002).

    Article  ADS  Google Scholar 

  71. F.T. Arecchi, S. Boccaletti, P.L. Ramazza: Pattern formation and competition in nonlinear optics, Phys. Rep. 318, 1–83 (1999).

    Article  ADS  Google Scholar 

  72. R.S. Bennink, V. Wong, A.M. Marino et al.: Honeycomb pattern formation by laser-beam filamentation in atomic sodium vapor, Phys. Rev. Lett. 88, 113901-1–113901-4 (2002).

    Article  ADS  Google Scholar 

  73. M. Remoissenet: Waves Called Solitons. Springer-Verlag, Berlin (1996).

    MATH  Google Scholar 

  74. G.I.A. Stegeman, D.N. Christodoulides, M. Segev: Optical spatial solitons: Historical perspectives, IEEE J. Select. Topics Quant. Elec. 6, 1419–1427 (2000).

    Article  Google Scholar 

  75. Y.S. Kivshar, D.E. Pelinovsky: Self-focusing and transverse instabilities of solitary waves, Phys. Rep. 331, 117–195 (2000).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Campillo, A.J. (2009). Small-Scale Self-focusing. In: Boyd, R.W., Lukishova, S.G., Shen, Y. (eds) Self-focusing: Past and Present. Topics in Applied Physics, vol 114. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34727-1_6

Download citation

Publish with us

Policies and ethics