Skip to main content

Endothelial and Hematopoietic Cells in the Intraembryonic Compartment

  • Chapter
Hematopoietic Stem Cell Development

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 845 Accesses

Abstract

The development of endothelial cells and hematopoietic cells is closely related at embryonic stages, and both cells share a common precursor, the hemangioblast. Differentiation into hematopoietic and endothelial lineages begins with proliferation of a single layer of mesodermal cells in the yolk sac resulting in formation of cell clusters, the blood islands. Cells at the periphery of these mesodermal aggregations differentiate into angioblasts. Blood vessels are formed by two different steps, vasculogenesis and angiogenesis. Cells in the interior of blood islands become primitive hematopoietic cells (HCs). Definitive hematopoiesis develops from the P-Sp region as early as E8.5. By El0.5, hematopoietic stem cells (HSCs) originate in the aorta-gonad-mesonephros (AGM) region. HSCs from this region colonize the fetal liver and then move to the spleen and bone marrow. In the embryo, HCs form clusters closely associated with and often adhering to endothelial cells on the ventral surface (floor) of the aorta. HCs that form these clusters also appear to be derived from the P-Sp. In addition, hematopoietic clusters have also been identified in the vitelline and umbilical arteries, indicating that intraembryonic hematopoietic development is associated with the major arterial region of the embryo.

Hematopoietic and endothelial lineages express several genes in common, such as VEGFR2, Tie2, and SCL/Tal-1. The fact that both lineages co-express common genes, many of which encode growth factor receptors or transcription factors, is not only consistent with the notion that they share a common precursor, but also suggests that similar molecular programs and growth regulatory mechanisms are involved in their development. Moreover, it has been reported that HSCs produce Angl, which promotes angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Risau W. Differentiation of endothelium. FASEB J 1995; 9:926–993.

    CAS  PubMed  Google Scholar 

  2. Carmerliet P. Mechanisms of angiogenesis and arteriogenesis. Nature. 2000; 6:389–395.

    Article  Google Scholar 

  3. Risau W. Mechanisms of angiogenesis. Nature 1997; 386:671–674.

    Article  CAS  PubMed  Google Scholar 

  4. Shalaby F, Rossant J, Yamaguchi TP et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995; 376:62–66.

    Article  CAS  PubMed  Google Scholar 

  5. Kukk E, Lymboussaki A, Taira S et al. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 1996; 122:3829–3837.

    CAS  PubMed  Google Scholar 

  6. Dumont DJ, Jussila L, Taipale J et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 1998; 282:946–949.

    Article  CAS  PubMed  Google Scholar 

  7. Carmeliet P, Ferreira V, Breier G et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380:435–439.

    Article  CAS  PubMed  Google Scholar 

  8. Ferrara N, Carver-Moore K, Chen H et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380:439–442.

    Article  CAS  PubMed  Google Scholar 

  9. Fong GH, Rossant J, Gertsenstein M et al. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995; 376:66–70.

    Article  CAS  PubMed  Google Scholar 

  10. Pardanaud L, Luton D, Prigent M et al. Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 1996; 122:1363–1371.

    CAS  PubMed  Google Scholar 

  11. Lyden D, Young AZ, Zagzag D et al. Idl and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 1999; 401:670–677.

    Article  CAS  PubMed  Google Scholar 

  12. Gale NW, Yancopoulos GD. Growth factors acting via endothelial cell-specific receptor tyrosine kinases:VEGFs, Angiopoietins, and ephrins in vascular development. Genes Dev 1999; 13:1055–1066.

    Article  CAS  PubMed  Google Scholar 

  13. Folkman J, D’Amore PA. Blood vessel formation: What is its molecular basis? Cell 1996; 87:1153–1155.

    Article  CAS  PubMed  Google Scholar 

  14. Lindahl P, Johansson BR, Leveen P et al. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 1997; 277:242–245.

    Article  CAS  PubMed  Google Scholar 

  15. Short RHD. Alveolar epithelium in relation to growth of the lung. Phil Trans R Soc Lond B 1950; 235:35–87.

    Article  Google Scholar 

  16. Patan S, Haenni B, Burri PH. Implementation of intussusceptive microvascular growth in the chicken chorioallantoic membrane. 1. Pillar forming by folding of the capillary wall. Microvasc Res 1996; 51:80–98.

    Article  CAS  PubMed  Google Scholar 

  17. Pardanaud L, Yassine F, Dieterlin-Lievre F. Relationship between vasculogenesis, angiogenesis and hematopoiesis during avian ontogeny. Development 1989; 105:473–485.

    CAS  PubMed  Google Scholar 

  18. Maisonpierre PC, Suri C, Jones PF et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277:55–60.

    Article  CAS  PubMed  Google Scholar 

  19. Gale NW, Thurston G, Hackett SF et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev Cell 2002; 3:411–423.

    Article  CAS  PubMed  Google Scholar 

  20. Coussens LM, Raymond WW, Bergers G et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 1999; 13:1382–1397.

    Article  CAS  PubMed  Google Scholar 

  21. Drake CJ, Little CD. Exogeneous vascular endothelial growth-factor induces malformed and hyperfused vessels during embryonic neovascularization. Proc Natl Acad Sci USA 1995; 92:7657–7661.

    Article  CAS  PubMed  Google Scholar 

  22. Suri C, McClain J, Thurston G et al. Increased vascularization in mice overexpressing Angiopoietin-1. Science 1998; 282:468–471.

    Article  CAS  PubMed  Google Scholar 

  23. Dumont DJ, Gradwohl G, Fong GH et al. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 1994; 8:1897–1909.

    Article  CAS  PubMed  Google Scholar 

  24. Sato TN, Tozawa Y, Deutsch U et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376:70–74.

    Article  CAS  PubMed  Google Scholar 

  25. Suri C, Jones PF, Patan S et al. Requisite role of Angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996; 87:1171–1180.

    Article  CAS  PubMed  Google Scholar 

  26. Hanahan D. Signaling vascular morphogenesis and maintenance. Science 1997; 277:48–50.

    Article  CAS  PubMed  Google Scholar 

  27. Yancopoulos GD, Klagsbrun M, Folkman J. Vasculogenesis, angiogenesis and growth factors: ephrins enter the fray at the border. Cell 1998; 93:661–664.

    Article  CAS  PubMed  Google Scholar 

  28. Gale NW, Holland SJ, Valenzuela DM et al. Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 1996; 17:9–19.

    Article  CAS  PubMed  Google Scholar 

  29. Flanagan JG, Vanderhaeghen P. The ephrins and Eph receptors in neural development. Annu Rev Neurosci 1998; 21:309–345.

    Article  CAS  PubMed  Google Scholar 

  30. Davis S, Gale NW, Aldrich TH et al. Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 1994; 266:816–819.

    Article  CAS  PubMed  Google Scholar 

  31. Stein E, Lane AA, Cerretti DP et al. Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev 1998; 12:667–678.

    Article  CAS  PubMed  Google Scholar 

  32. Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 1998; 93:741–753.

    Article  CAS  PubMed  Google Scholar 

  33. Gerety SS, Wang HU, Chen ZF et al. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell 1999; 4:403–414.

    Article  CAS  PubMed  Google Scholar 

  34. Adams RH, Wilkinson GA, Weiss C et al. Roles of ephrinB ligands and EphB receptors in cardiovascular development: Demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 1999; 13:295–306.

    Article  CAS  PubMed  Google Scholar 

  35. Dzierzak E, Medvinsky A. Mouse embryonic hematopoiesis. Trends Genet 1995; 11:359–366.

    Article  CAS  PubMed  Google Scholar 

  36. Johnson GR, Moore MAS. Role of stem cell migration in initiation of mouse foetal liver hematopoiesis. Nature 1975; 258:726–728.

    Article  CAS  PubMed  Google Scholar 

  37. Risau W. Embryonic angiogenesis factors. Pharmac Ther 1991; 51:371–376.

    Article  CAS  Google Scholar 

  38. Cumano A, Diterien-Lievre F, Godin I. Lymphoid potential, Probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleure. Cell 1996; 86:907–916.

    Article  CAS  PubMed  Google Scholar 

  39. Medvinsky AL, Samoylina NL, Müller AM et al. An early pre-liver intra-embryonic source of CFU-S in the developing mouse. Nature 1993; 364:64–66.

    Article  CAS  PubMed  Google Scholar 

  40. Müller AM, Medvinsky A, Strouboulis J et al. Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1994; 1:291–301.

    Article  PubMed  Google Scholar 

  41. Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 1996; 86:897–906.

    Article  CAS  PubMed  Google Scholar 

  42. Yoder MC, Hiatt K, Dutt P et al. Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity 1997a; 7:335–344.

    Article  CAS  PubMed  Google Scholar 

  43. Yoder MC, Hiatt K, Mukherjee P. In vitro repopulating hematopoietic stem cells are present in the murine yolk sac at day 9.0 postcoitus. Proc Natl Acad Sci USA 1997b; 94:6776–6780.

    Article  CAS  PubMed  Google Scholar 

  44. Gerber HP, Malik AK, Solar GP et al. VEGF regulated haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 2002; 417:954–958.

    Article  CAS  PubMed  Google Scholar 

  45. Begley CG, Apian PD, Davey MP et al. Chromosomal translocation in human leukemic stem-cell line disrupts the T-cell receptor delta-chain diversity region and results in a previously unreported fusion transcript. Proc Natl Acad Sci USA 1989; 86:2031–2035.

    Article  CAS  PubMed  Google Scholar 

  46. Finger LR, Kagen J, Christopher G et al. Involvement of the TCL5 gene on human chromosome 1 in T-cell leukemia and melanoma. Proc Natl Acad Sci USA 1989; 86:5039–5043.

    Article  CAS  PubMed  Google Scholar 

  47. Chen Q, Yang CY, Tsan JT et al. Coding sequence of the Tal-1 gene are disrupted by chromosome translocation in human T cell leukemia. J Exp Med 1990; 172:1403–1408.

    Article  CAS  PubMed  Google Scholar 

  48. Green AR, Salvaris E, Begley CG. Erythroid expression of the “helix-loop-helix” gene, SCL. Oncogene 1991; 6:475–479.

    CAS  PubMed  Google Scholar 

  49. Visvader J, Begley CG, Adams JM. Differential expression of the LYL, SCL, E2A helix-loop-helix genes within the hematopoietic system. Oncogene 1991; 6:187–194.

    CAS  PubMed  Google Scholar 

  50. Hwang L-Y, Siegelman M, Davis L et al. Expression of the TALI proto-oncogene in cultured endothelial cells and blood vessels of the spleen. Oncogene 1993; 8:3043–3046.

    CAS  PubMed  Google Scholar 

  51. Kallianpur AR, Jordan JE, Brandt SJ. The SCL/TAL-1 gene is expressed in progenitors of both the hematopoietic and vascular systems during embryogenesis. Blood 1994; 83:1200–1208.

    CAS  PubMed  Google Scholar 

  52. Green AR, Lints T, Visvader J et al. SCL is coexpressed with GATA-1 in haemopoietic cells but is also expressed in developing brain. Oncogene 1992; 7:653–660.

    CAS  PubMed  Google Scholar 

  53. Robb L, Lyons I, Li R et al. Absence of yolk sac hematopoiesis from mice with a targeted disruption of the sci gene. Proc Natl Acad Sci USA 1995; 92:7075–7079.

    Article  CAS  PubMed  Google Scholar 

  54. Shivdasani RA, Mayer EL, Orkin SH. Absence of blood formation in mice lacking the T cell leukaemia protein tal-1/SCL. Nature 1995; 373:432–434.

    Article  CAS  PubMed  Google Scholar 

  55. Visvader JE, Fujiwara Y, Orkin SH. Unsuspected role for the T-cell leukemia protein SCL/tal-1 in vascular development. Genes Dev 1998; 12:473–479.

    Article  CAS  PubMed  Google Scholar 

  56. Elefanty AG, Begley CG, Hartley L et al. SCL expression in the mouse embryo detected with a targeted lacZ reporter gene demonstrates its localization to hematopoietic, vascular, and neural tissues. Blood 1999; 94:3754–3763.

    CAS  PubMed  Google Scholar 

  57. Stainer DY, Weintein BM, Detrich III et al. cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 1995; 121:3141–3150.

    Google Scholar 

  58. Liao W, Bisgrove BW, Sawyer H et al. The zebrafish gene cloche acts upstream of a flk-1 homologue to regulate endothelial differentiation. Development 1997; 124:381–389.

    CAS  PubMed  Google Scholar 

  59. Liao EC, Paw BH, Oates AC et al. SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish. Genes Dev 1998; 12:621–626.

    Article  CAS  PubMed  Google Scholar 

  60. Vikkula M, Boon LM, Carraway KL III et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 1996; 87:1181–1190.

    Article  CAS  PubMed  Google Scholar 

  61. Takakura N, Huang XL, Naruse T et al. Critical role of the TIE2 endothelial receptor in the development of definitive hematopoiesis. Immunity 1998; 9:677–686.

    Article  CAS  PubMed  Google Scholar 

  62. Sato A, Iwama A, Takakura N et al. Characterization of TEK receptor tyrosine kinase and its ligands, Angiopoietins, in human hematopoietic progenitor cells. Int Immuno 1998; 10:1217–1227.

    Article  CAS  Google Scholar 

  63. Tsai FY, Keller G, Kuo FC et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 1994; 371:221–226.

    Article  CAS  PubMed  Google Scholar 

  64. Okuda T, van Deursen J, Hiebert SW et al. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996; 84:321–330.

    Article  CAS  PubMed  Google Scholar 

  65. Wang Q, Stacy T, Binder M et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA 1996; 93:3444–3449.

    Article  CAS  PubMed  Google Scholar 

  66. Pandolfi PP, Roth ME, Karis A et al. Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet 1995; 11:40–44.

    Article  CAS  PubMed  Google Scholar 

  67. Mucenski ML, McLain K, Kier AB et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 1991; 65:677–689.

    Article  CAS  PubMed  Google Scholar 

  68. Eichmann A, Corbel C, Nataf V et al. Ligand-dependent development of the endothelial and hematopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2. Proc Natl Acad Sci USA 1997; 94:5141–5146.

    Article  CAS  PubMed  Google Scholar 

  69. Young PE, Baumhueter S, Lasky LA. The sialomucin CD34 is expressed on hematopoietic cells and blood vessels during murine development. Blood 1995; 85:96–105.

    CAS  PubMed  Google Scholar 

  70. Millauer B, Wizigmann-Voos S, Schnurch H et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 1993; 72:835–846.

    Article  CAS  PubMed  Google Scholar 

  71. Kabrun N, Buhring HJ, Choi K et al. Flk-1 expression defines a population of early embryonic hematopoietic precursors. Development 1997; 124:2039–2048.

    CAS  PubMed  Google Scholar 

  72. Fong GH, Klingensmith J, Wood CR et al. Regulation of flt-1 expression during mouse embryogenesis suggests a role in the establishment of vascular endothelium. Dev Dyn 1996; 207:1–10.

    Article  CAS  PubMed  Google Scholar 

  73. Orkin S. GATA-binding transcription factors in hematopoietic cells. Blood 1992; 80:575–581.

    CAS  PubMed  Google Scholar 

  74. Watt SM, Gechmeissener SE, Bates PA. PECAM-1: Its expression and function as a cell adhesion molecule on hematopoietic and endothelial cells. Leuk Lymphoma 1995; 17:229–244.

    Article  CAS  PubMed  Google Scholar 

  75. Dieterlen-Lievre F, Martin C. Diffuse intraembryonic hemopoiesis in normal and chimeric avian development. Dev Biol 1981; 88:180–191.

    Article  CAS  PubMed  Google Scholar 

  76. Garcia-Porrero JA, Godin IE, Dieterlen-Lievre F. Potential intraembryonic hemogenic sites at pre-liver stages in the mouse. Anat Embryol 1995; 192:425–435.

    Article  CAS  PubMed  Google Scholar 

  77. Tavian M, Coulombel L, Luton D et al. Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood 1996; 87:67–72.

    CAS  PubMed  Google Scholar 

  78. Wood HB, May G, Healy L et al. CD34 expression patterns during early mouse development are related to models of blood vessel formation and reveal additional sites of hematopoiesis. Blood 1997; 90:2300–2311.

    CAS  PubMed  Google Scholar 

  79. de Bruijn MF, Speck NA, Peeters MC et al. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J 2000; 19:2465–2474.

    Article  PubMed  Google Scholar 

  80. Shalaby F, Ho J, Stanford WL et al. A requirement for Flkl in primitive and definitive hematopoiesis and vasculogenesis. Cell 1997; 89:981–990.

    Article  CAS  PubMed  Google Scholar 

  81. Dickson MC, Martin JS, Cousins FM et al. Defective haematopoiesis and vasculogenesis in transforming growth factor-β1 knock out mice. Development 1995; 121:1845–1854.

    CAS  PubMed  Google Scholar 

  82. Nishikawa S-I, Nishikawa S, Kawamoto H et al. In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos. Immunity 1998; 8:761–769.

    Article  CAS  PubMed  Google Scholar 

  83. Hamaguchi I, Huang XL, Takakura N et al. In vitro hematopoietic and endothelial cell development from cells expressing TEK receptor in murine aorta-gonad-mesonephros region. Blood 1999; 93:1549–1556.

    CAS  PubMed  Google Scholar 

  84. Minsai MG, Riminucci M, De Angelis L et al. The meso-angioblast: A multipotent, self-renewing cell that originated from the dorsal aorta and differentiates into most mesodermal tissues. Development 2002; 129:2773–2783.

    Google Scholar 

  85. Takakura N, Watanabe T, Suenobu S et al. A role for hematopoietic stem cells in promoting angiogenesis. Cell 2000; 102:199–209.

    Article  CAS  PubMed  Google Scholar 

  86. North T, Gu TL, Stacy T et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 1999; 126:2563–2575.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Arai, F., Suda, T. (2006). Endothelial and Hematopoietic Cells in the Intraembryonic Compartment. In: Hematopoietic Stem Cell Development. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33535-3_8

Download citation

Publish with us

Policies and ethics