Skip to main content

Intraembryonic Development of Hematopoietic Stem Cells during Human Ontogeny: Expression Analysis

  • Chapter
Hematopoietic Stem Cell Development

Part of the book series: Medical Intelligence Unit ((MIUN))

Abstract

The adult hematopoietic system is composed of a number of different cell types, including erythrocytes and cells of the myeloid and lymphoid lineages. It is generally believed that all these cell types derive, through a series of maturing progenitors, from a common stem cell, which first appears during embryogenesis and persists into adult life. This hematopoietic stem cell (HSC) is defined by its ability to self-renew and to generate cells of all hematopoietic lineages. Clearly these cells would have enormous therapeutic potential in the treatment of blood disorders. However, because of the circulatory nature of the hematopoietic system and the multiple cell types involved, the processes controlling the generation and development of HSCs have proved difficult to study and are poorly understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhatia M, Bonnet D, Murdoch B et al. A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med 1998; 4(9):1038–1045.

    Article  CAS  PubMed  Google Scholar 

  2. Medvinsky AL, Samoylina NL, Muller AM et al. An early preliver intraembryonic source of CFU-S in the developing mouse. Nature 1993; 364(6432):64–67.

    Article  CAS  PubMed  Google Scholar 

  3. Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 1996; 86(6):897–906.

    Article  CAS  PubMed  Google Scholar 

  4. Godin I, Dieterlen-Lievre F, Cumano A. Emergence of multipotent hemopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryos, beginning at 8.5 days postcoitus. Proc Natl Acad Sci USA 1995; 92(3):773–777.

    Article  CAS  PubMed  Google Scholar 

  5. Tavian M, Coulombel L, Luton D et al. Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood 1996; 87(1):67–72.

    CAS  PubMed  Google Scholar 

  6. Cumano A, Dieterlen-Lievre F, Godin I. Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 1996; 86(6):907–916.

    Article  CAS  PubMed  Google Scholar 

  7. Choi K, Kennedy M, Kazarov A et al. A common precursor for hematopoietic and endothelial cells. Development 1998; 125(4):725–732.

    CAS  PubMed  Google Scholar 

  8. Labastie MC, Cortes F, Romeo PH et al. Molecular identity of hematopoietic precursor cells emerging in the human embryo. Blood 1998; 92(10):3624–3635.

    CAS  PubMed  Google Scholar 

  9. Marshall CJ, Moore RL, Thorogood P et al. Detailed characterization of the human aorta-gonad-mesonephros region reveals morphological polarity resembling a hematopoietic stromal layer. Dev Dyn 1999; 215(2):139–147.

    Article  CAS  PubMed  Google Scholar 

  10. Tavian M, Hallais MF, Peault B. Emergence of intraembryonic hematopoietic precursors in the preliver human embryo. Development 1999; 126(4):793–803.

    CAS  PubMed  Google Scholar 

  11. Small D, Levenstein M, Kim E et al. STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc Natl Acad Sci USA 1994; 91(2):459–463.

    Article  CAS  PubMed  Google Scholar 

  12. Shalaby F, Rossant J, Yamaguchi TP et al. Failure of blood-island formation and vasculogenesis in Flk-l-deficient mice. Nature 1995; 376(6535):62–66.

    Article  CAS  PubMed  Google Scholar 

  13. Sato TN, Tozawa Y, Deutsch U et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376(6535):70–74.

    Article  CAS  PubMed  Google Scholar 

  14. Wood HB, May G, Healy L et al. CD34 expression patterns during early mouse development are related to modes of blood vessel formation and reveal additional sites of hematopoiesis. Blood 1997; 90(6):2300–2311.

    CAS  PubMed  Google Scholar 

  15. Marshall CJ, Thrasher AJ. The embryonic origins of human haematopoiesis. Br J Haematol 2001; 112(4):838–850.

    Article  CAS  PubMed  Google Scholar 

  16. Shivdasani RA, Mayer EL, Orkin SH. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-l/SCL. Nature 1995; 373(6513):432–434.

    Article  CAS  PubMed  Google Scholar 

  17. Tsai FY, Keller G, Kuo FC et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 1994; 371(6494):221–226.

    Article  CAS  PubMed  Google Scholar 

  18. Mucenski ML, McLain K, Kier AB et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 1991; 65(4):677–689.

    Article  CAS  PubMed  Google Scholar 

  19. Okuda T, van Deursen J, Hiebert SW et al. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996; 84(2):321–330.

    Article  CAS  PubMed  Google Scholar 

  20. North T, Gu TL, Stacy T et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 1999; 126(11):2563–2575.

    CAS  PubMed  Google Scholar 

  21. Cortes F, Deschaseaux F, Uchida N et al. HCA, an immunoglobulin-like adhesion molecule present on the earliest human hematopoietic precursor cells, is also expressed by stromal cells in blood-forming tissues. Blood 1999; 93(3):826–837.

    CAS  PubMed  Google Scholar 

  22. Watt SM, Butler LH, Tavian M et al. Functionally defined CD 164 epitopes are expressed on CD34(+) cells throughout ontogeny but display distinct distribution patterns in adult hematopoietic and nonhematopoietic tissues. Blood 2000; 95(10):3113–3124.

    CAS  PubMed  Google Scholar 

  23. Thrasher AJ, Jones GE, Kinnon C et al. Is Wiskott—Aldrich syndrome a cell trafficking disorder? Immunol Today 1998; 19(12):537–539.

    Article  CAS  PubMed  Google Scholar 

  24. Maeno M, Mead PE, Kelley C et al. The role of BMP-4 and GATA-2 in the induction and differentiation of hematopoietic mesoderm in Xenopus laevis. Blood 1996; 88(6):1965–1972.

    CAS  PubMed  Google Scholar 

  25. Sitnicka E, Ruscetti FW, Priestley GV et al. Transforming growth factor beta 1 directly and reversibly inhibits the initial cell divisions of long-term repopulating hematopoietic stem cells. Blood 1996; 88(1):82–88.

    CAS  PubMed  Google Scholar 

  26. Marshall CJ, Kinnon C, Thrasher AJ. Polarized expression of bone morphogenetic protein-4 in the human aorta-gonad-mesonephros region. Blood. 15;96(4):1591–3.

    Google Scholar 

  27. Oh IH, Lau A, Eaves CJ. During ontogeny primitive (CD34(+)CD38(-)) hematopoietic cells show altered expression of a subset of genes associated with early cytokine and differentiation responses of their adult counterparts. Blood 2000; 96(13):4160–4168.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Marshall, C. (2006). Intraembryonic Development of Hematopoietic Stem Cells during Human Ontogeny: Expression Analysis. In: Hematopoietic Stem Cell Development. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33535-3_11

Download citation

Publish with us

Policies and ethics