Skip to main content
  • 761 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar SZ, Noff D, Edelstein S, et al. 1,25-Dihydroxyvitamin D3 and the regulation of macrophage function. Calcif Tissue Int 1981;33:673–6.

    Google Scholar 

  2. Hayes ME, O’Donoghue DJ, Ballardie FW, et al. Peritonitis induces the synthesis of 1 alpha,25-dihydroxyvitamin D3 in macrophages from CAPD patients. FEBS Lett 1987;220:307–10.

    PubMed  CAS  Google Scholar 

  3. Hubel E, Kiefer T, Weber J, et al. In vivo effect of 1,25-dihydroxyvitamin D3 on phagocyte function in hemodialysis patients. Kidney Int 1991;40:927–33.

    PubMed  CAS  Google Scholar 

  4. Shany S, Rapoport J, Zuili I, et al. Metabolism of 25-OH-vitamin D3 by peritoneal macrophages from CAPD patients. Kidney Int 1991;39:1005–11.

    PubMed  CAS  Google Scholar 

  5. Stroder J, Kasal P. Evaluation of phagocytosis in rickets. Acta Paediatr Scand 1970;59:288–92.

    PubMed  CAS  Google Scholar 

  6. Haussler MR, McCain TA. Basic and clinical concepts related to vitamin D metabolism and action (first of two parts). N Engl J Med 1977;297:974–83.

    PubMed  CAS  Google Scholar 

  7. Weisharr RE, Simpson RU. Involvement of vitamin D3 with cardiovascular function. II. Direct and indirect effects. Am J Physiol 1987;253:E675–83.

    Google Scholar 

  8. Brautbar N. Skeletal myopathy in uremia. Abnormal energy metabolism. Kidney Int 1983;24:S81–6.

    Google Scholar 

  9. Henderson RG, Russell RG, Ledingham JG, et al. Effects of 1,25-dihydroxycholecalciferol on calcium absorption, muscle weakness, and bone disease in chronic renal failure. Lancet 1974;1:379–84.

    PubMed  CAS  Google Scholar 

  10. Wong RG, Norman AW, Reddy CR, et al. Biologic effects of 1,25-dihydroxycholecalciferol (a highly active vitamin D metabolite) in acutely uremic rats. J Clin Invest 1972;51:1287–91.

    PubMed  CAS  Google Scholar 

  11. Walling MW, Kimberg DV, Wasserman RH, et al. Duodenal active transport of calcium and phosphate in vitamin D-deficient rats: effects of nephrectomy, Cestrum diurnum, and 1 alpha,25-dihydroxyvitamin D3. Endocrinology 1976;98:1130–34.

    PubMed  CAS  Google Scholar 

  12. Fukagawa M, Kaname S, Igarashi T, et al. Regulation of parathyroid hormone synthesis in chronic renal failure in rats. Kidney Int 1991;39:874–81.

    PubMed  CAS  Google Scholar 

  13. Baker LR, Abrams L, Roe CJ, et al. 1,25(OH)2D3 administration in moderate renal failure: a prospective double-blind trial. Kidney Int 1989;35:661–9.

    PubMed  CAS  Google Scholar 

  14. Andress DL, Norris KC, Coburn JW, et al. Intravenous calcitriol in the treatment of refractory osteitis fibrosa of chronic renal failure [see comments]. N Engl J Med 1989;321:274–9.

    PubMed  CAS  Google Scholar 

  15. Patel SR, Koenig RJ, Hsu CH. Effect of Schiff base formation on the function of the calcitriol receptor. Kidney Int 1996;50:1539–45.

    PubMed  CAS  Google Scholar 

  16. Clemens TL, Garrett KP, Zhou XY, et al. Immunocytochemical localization of the 1,25-dihydroxyvitamin D3 receptor in target cells. Endocrinology 1988;122:1224–30.

    PubMed  CAS  Google Scholar 

  17. Cai Q, Tapper D, Gilmour R, et al. The modulation of the excitability of avian nerves by vitamin D: relation to calbindin-D, calcium status and lipid composition. Cell Calcium 1994;15:401–10.

    PubMed  CAS  Google Scholar 

  18. Stumpf W, Clark S, O’Brian LP, et al. 1,25(OH)2 vitamin D3 sites of action in spinal cord and sensory ganglion. Anat Embryol 1988;177:307–10.

    PubMed  CAS  Google Scholar 

  19. Walters M, Wicker D, Riggle P. 1,25-Dihydroxyvitamin D3 receptors identified in the rat heart. J Mol Cell Cardiol 1986;18:67–72.

    PubMed  CAS  Google Scholar 

  20. Oermann E, Bidman H, Witte O, et al. Effects of 1 alpha, 25-dihydroxyvitamin D3 on the expression of HO-1 and GFAP in glial cells of the photothrombotically lesioned cerebral cortex. J Chem Neuroanat 2004;28:225–38.

    PubMed  CAS  Google Scholar 

  21. Bazzni C, Arletti R, Bertollini A. Vit D deficiency reduces the inotropic effect of oubain. Acta Vitam Enzymol 1983;5:147–51.

    Google Scholar 

  22. Weisharr R, Simpson R. The involvement of the endocrine system in regulating cardiovascular function: emphasis on Vit D3. Endocr Rev 1989;10:351–65.

    Google Scholar 

  23. Suda T, Ueno Y, Fujii K, et al. Vitamin D and bone. J Cell Biochem 2002;88:259–66.

    Google Scholar 

  24. Jones G, Strgnell S, HF D. Current understanding of the molecular actions of vitamin D. Physiol Rev 1998;78:1193–231.

    PubMed  CAS  Google Scholar 

  25. Teng M, Wolf M, Ofsthun N, et al. Activated injectable vitamin D and hemodialysis survival: a historical cohort study. J Am Soc Nephrol 2005;16:1115–25.

    PubMed  CAS  Google Scholar 

  26. Harris D, Go V. Vitamin D and carcinogenesis. J Nutr 2004;134:3463s–71s.

    PubMed  CAS  Google Scholar 

  27. Peehl D, Feldman D. Interaction of nuclear receptor ligands with the vitamin D signaling pathway in prostate cancer. J Steroid Biochem Mol Biol 2004;92:307–15.

    PubMed  CAS  Google Scholar 

  28. Beer T, Myrthue A, Garzotto M, et al. Randomized study of high-dose pulse calcitriol or placebo prior to radical prostatectomy. Cancer Epidemiol Biomarkers Prev 2004;13:2225–32.

    PubMed  CAS  Google Scholar 

  29. Nakagawa K, Kawaura A, Kato S, et al. 1alpha, 25 Dihydroxyvitamin D3 is a preventive factor in the metastasis of lung cancer. Carcinogenesis 2005;26:429–40.

    PubMed  CAS  Google Scholar 

  30. Dusso A, Lopez HS, Lewis FJ, et al. Effect of vitamin D metabolites on calcitriol metabolism in experimental renal failure. Kidney Int 1989;36:234–9.

    Google Scholar 

  31. Gyetko MR, Hsu CH, Wilkinson CC, et al. Monocyte 1 alpha-hydroxylase regulation: induction by inflammatory cytokines and suppression by dexamethasone and uremia toxin. J Leukoc Biol 1993;54:17–22.

    PubMed  CAS  Google Scholar 

  32. May A, Asadullah K, Zugel U. Immunoregulation through 1,25-dihydroxyvitamin D3 and its analog. Curr Drug Targets Inflamm Allergy 2004;3:377–93.

    PubMed  CAS  Google Scholar 

  33. Chesney RW, Rosen JF, Hamstra AJ, et al. Absence of seasonal variations in serum concentration of 1,25-dihydroxyvitamin D despite a rise in 25-hydroxyvitamin D in summer. J Endocrin Metab 1981;53:138–42.

    Google Scholar 

  34. Hsu C, Patel SR, Young EW, et al. Effects of purine derivatives on calcitriol metabolism in rats. Am J Physiol 1991;260:F596–601.

    PubMed  CAS  Google Scholar 

  35. Hsu CH, Patel SR, Young EW, et al. Production and degradation of calcitriol in renal failure rats. Am J Physiol 1987;253:F1015–9.

    PubMed  CAS  Google Scholar 

  36. Lucas PA, Brown RC, Jones CR, et al. Reduced 1,25(OH)2D3 may be responsible for the development of hyperparathyroidism in early chronic renal failure. Proc EDTA-ERA 1985;22:1124–8.

    Google Scholar 

  37. Pitts TO, Piraino BH, Mitro R, et al. Hyperparathyroidism and 1,25-dihydroxyvitamin D deficiency in mild, moderate, and severe renal failure. J Clin Endocrinol Metab 1988;67:876–81.

    PubMed  CAS  Google Scholar 

  38. Kawashima H, Kurokawa K. Unique hormonal regulation of vitamin D metabolism in the mammalian kidney. Miner Electrolyte Metab 1983;9:227–35.

    PubMed  CAS  Google Scholar 

  39. Prince RL, Hutchison BG, Kent JC, et al. Calcitriol deficiency with retained synthetic reserve in chronic renal failure. Kidney Int 1988;33:722–8.

    PubMed  CAS  Google Scholar 

  40. Baxter L, DeLuca H. Stimulation of 25-hydroxyvitamin D3-1α-hydroxylase by phosphate depletion. J Biol Chem 1976;251:3158–63.

    PubMed  CAS  Google Scholar 

  41. Portale AA, Booth BE, Halloran BP, et al. Effect of dietary phosphorus on circulating concentrations of 1,25-dihydroxyvitamin D and immunoreactive parathyroid hormone in children with moderate renal insufficiency. J Clin Invest 1989;73:1580–9.

    Google Scholar 

  42. Gray R. Control of plasma 1,25(OH)2 vitamin D concentrations by calcium and phophorus: effect of hypophysectomy. Calcif Tissue Intern 1985;33:485–8.

    Google Scholar 

  43. Lee SW, Russell J, Avioli LV. 25-Hydroxycholecalciferol to 1,25-dihydroxycholecalciferol: conversion impaired by systemic acidosis. Science 1977;195:994–6.

    PubMed  CAS  Google Scholar 

  44. Cunningham J, Bikle DD, Avioli LV. Acute, but not chronic, metabolic acidosis disturbs 25-hydroxyvitamin D3 metabolism. Kidney Int 1984;25:47–52.

    PubMed  CAS  Google Scholar 

  45. Kraut JA, Gordon EM, Ransom JC, et al. Effect of chronic metabolic acidosis on vitamin D metabolism in humans. Kidney Int 1983;24:644–8.

    PubMed  CAS  Google Scholar 

  46. Bushinsky DA, Favus MJ, Schneider AB, et al. Effects of metabolic acidosis on PTH and 1,25(OH)2D3 response to low calcium diet. Am J Physiol 1982;243:F570–5.

    PubMed  CAS  Google Scholar 

  47. Langman CB, Bushinsky DA, Favus MJ, et al. Ca and P regulation of 1,25(OH)2D3 synthesis by vitamin D-replete rat tubules during acidosis. Am J Physiol 1986;251:F911–8.

    PubMed  CAS  Google Scholar 

  48. Langman CB. Calcitriol metabolism during chronic metabolic acidosis. Semin Nephrol 1989;9:65–71.

    PubMed  CAS  Google Scholar 

  49. Dusso A, Finch J, Brown A, et al. Regulation of extrarenal production of calcitriol in normal and uremic humans. J Clin Endocrinol Metab 1991;72:157–64.

    PubMed  CAS  Google Scholar 

  50. Hsu CH, Patel S. Factors influencing calcitriol metabolism in renal failure. Kidney Int 1990;37:44–50.

    PubMed  CAS  Google Scholar 

  51. Hsu CH, Vanholder R, Patel S, et al. Subfractions in uremic plasma ultrafiltrate inhibit calcitriol metabolism. Kidney Int 1991;40:868–73.

    PubMed  CAS  Google Scholar 

  52. Hsu CH, Patel S. Uremic plasma contains factors inhibiting 1α-hydroxylase activity. J Am Soc Nephrol 1992;3:947–52.

    PubMed  CAS  Google Scholar 

  53. Kikuchi T, Orita Y, Ando A, et al. Liquid-chromatographic determination of guanidino compounds in plasma and erythrocytes of normal and uremic patients. Clin Chem 1981;27:1899–1902.

    PubMed  CAS  Google Scholar 

  54. Stein IM, Burton BD, Kornhauser RS. Guanidinosuccinic acid in renal failure, experimental azotemia, and inborn errors of urea cycles. N Engl J Med 1969;280:926–30.

    PubMed  CAS  Google Scholar 

  55. Hsu CH, Patel S. The effect of polyamines, methyl guanine, and guanidinosuccinic acid on calcitriol metabolism. J Lab Clin Med 1990;115:69–73.

    PubMed  Google Scholar 

  56. Hsu C, Vanholder R, Patel S. Effect of uric acid on plasma levels of calcitriol in renal failure. J Am Soc Nephrol 1993;4:1035–8.

    PubMed  Google Scholar 

  57. Barrett-Connor M, Chang J, Edelstein S. Coffee-associated osteoporosis offset by daily milk consumption. N Engl J Med 1994;271:280–3.

    CAS  Google Scholar 

  58. Carabedian M, Holick MF, DeLuca HF, et al. Control of 25-hydroxycholecalciferol metabolism by the parathyroid gland. Proc Natl Acad Sci USA 1972;69:1673–6.

    Google Scholar 

  59. Henry HL, MIdgett RJ, Norman AW. Regulation of 25-hydroxyvitamin D-1-hydroxylase in vivo. J Biol Chem 1974;249:7584–90.

    PubMed  CAS  Google Scholar 

  60. Booth BE, Tsa HC, Morris RC. Parathyroidectomy reduces 25-hydroxyvitamin D-1-hydroxylase activity in the hypocalcemic vitamin D-deficient chick. J Clin Invest 1977;60:1314–20.

    PubMed  CAS  Google Scholar 

  61. Eisman JA, Wark JD, Prince RL, et al. Modulation of plasma 1,25-hydroxyvitamin D in man by stimulation or supression tests. Lancet 1979;2:931–5.

    PubMed  CAS  Google Scholar 

  62. Patel SR, Ke H-Q, Vanholder R, et al. Inhibition of calcitriol receptor binding to vitamin D response elements by uremic toxins. J Clin Invest 1995;96:50–9.

    PubMed  CAS  Google Scholar 

  63. Patel S, Xu Y, Koenig R, et al. Effect of glucose on the function of the calcitriol receptor and vitamin D metabolism. Kidney Int 1997;52:79–86.

    PubMed  CAS  Google Scholar 

  64. Patel S, Simpson RU, Hsu CH. Effect of vitamin D metabolites on calcitriol metabolism in experimental renal failure. Kidney Int 1989;36:234–9.

    PubMed  CAS  Google Scholar 

  65. Hsu CH, Patel S, Buchsbaum BL. Calcitriol metabolism in patients with chronic renal failure. Am J Kidney Dis 1991;17:185–90.

    PubMed  CAS  Google Scholar 

  66. Hsu C, Patel S, Young E, et al. Production and metabolic clearance of calcitriol in acute renal failure. Kidney Int 1988;33:530–5.

    PubMed  Google Scholar 

  67. Kumar R, DeLuca HF. Side chain oxidation of 1,25-dihydroxy vitamin D3 in the rat: effect of removal of intestine. Biochem Biophys Res Commun 1977;76:253–8.

    CAS  Google Scholar 

  68. Reddy GS, Tserng KY. Calcitroic acid, end product of renal metabolism of 1,25-dihydroxyvitamin D3 through C-24 oxidation pathway. Biochemistry 1989;28:1763–9.

    PubMed  CAS  Google Scholar 

  69. Ishzuka S, Norman AW. Metabolic passways from 1α,25-dihydroxyvitamin D3 to 1α,25-dihydroxyvitamin D3-26,23 lactone. J Biol Chem 1987;262:7165–70.

    Google Scholar 

  70. Colston KW, Evans IM, Spelsberg TC, et al. Feedback regulation of vitamin D metabolism by 1,25-dihydroxycholecalciferol. Biochem J 1977;164:83–9.

    PubMed  CAS  Google Scholar 

  71. Hsu CH, Patel RS, Vanholder R. Mechanism of decreased intestinal calcitriol receptor concentration in renal failure. Am J Physiol 1993;264:F662–9.

    PubMed  CAS  Google Scholar 

  72. Hirst M, Feldman D. Regulation of 1,25(OH)2 vitamin D3 receptor content in cultured LLC-PK1 kidney cells limits hormonal responsiveness. Biochem Biophys Res Commun 1983;116:121–7.

    PubMed  CAS  Google Scholar 

  73. Hsu CH, Patel SR, Young EW. Mechanism of decreased calcitriol degradation in renal failure. Am J Physiol 1992;262:F192–8.

    PubMed  CAS  Google Scholar 

  74. Haussler M, Donaldson C, Kelly M, et al. Function and mechanism of action of the 1,25-dihydroxyvitamin D3 receptor. In: Norman A, Schaefer K, Grigoleit, GH, Herrath, DV, eds. Vitamin D. Chemical, Biochemical and Clinical Update, pp. 83–92. Berlin, New York: Walter deGreyter, 1985.

    Google Scholar 

  75. Patel SR, Ke HQ, Hsu CH. Effect of vitamin D metabolites on calcitriol degradative enzymes in renal failure. Kidney Int 1994;45:509–14.

    PubMed  CAS  Google Scholar 

  76. Strom M, Sandgren ME, Brown TA, et al. 1,25-Dihydroxyvitamin D3 up-regulates the 1,25-dihydroxyvitamin D3 receptor in vivo. Proc Natl Acad Sci USA 1989;86:9770–3.

    PubMed  CAS  Google Scholar 

  77. Favus MJ, Mangelsdorf DJ, Tembe V, et al. Evidence for in vivo upregulation of the intestinal vitamin D receptor during dietary calcium restriction in the rat. J Clin Invest 1988;82:218–24.

    PubMed  CAS  Google Scholar 

  78. Huang YC, Lee S, Stolz R, et al. Effect of hormones and development on the expression of the rat 1,25-dihydroxyvitamin D3 receptor gene. Comparison with calbindin gene expression. J Biol Chem 1989;264:17454–61.

    PubMed  CAS  Google Scholar 

  79. Naveh-Many T, Marx R, Keshet E, et al. Regulation of 1,25-dihydroxyvitamin D3 receptor gene expression by 1,25-dihydroxyvitamin D3 in the parathyroid in vivo. J Clin Invest 1990;86:1968–75.

    PubMed  CAS  Google Scholar 

  80. Shvil Y, Naveh-Many T, Barach P, et al. Regulation of parathyroid cell gene expression in experimental uremia. J Am Soc Nephrol 1990;1:99–104.

    PubMed  CAS  Google Scholar 

  81. Reinhardt TA, Horst RL. Ketoconazole inhibits self-induced metabolism of 1,25-dihydroxyvitamin D3 and amplifies 1,25-dihydroxyvitamin D3 receptor up-regulation in rat osteosarcoma cells. Arch Biochem Biophys 1989;272:459–65.

    PubMed  CAS  Google Scholar 

  82. McDonnell DP, Mangelsdorf DJ, Pike JW, et al. Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science 1987;235:1214–7.

    PubMed  CAS  Google Scholar 

  83. Brown AJ, Berkoben M, Ritter CS, et al. Binding and metabolism of 1,25-dihydroxyvitamin D3 in cultured parathyroid cells. Endocrinology 1992;130:276–81.

    PubMed  CAS  Google Scholar 

  84. Chen TL, Li JM, Ye TV, et al. Hormonal responses to 1,25-dihydroxyvitamin D3 in cultured mouse osteoblast-like cells—modulation by changes in receptor level. J Cell Physiol 1986;126:21–8.

    PubMed  CAS  Google Scholar 

  85. Reinhardt TA, Horst RL. Self-induction of 1,25-dihydroxyvitamin D3 metabolism limits receptor occupancy and target tissue responsiveness. J Biol Chem 1989;264:15917–21.

    PubMed  CAS  Google Scholar 

  86. Korkor AB. Reduced binding of [3H]1,25-dihydroxyvitamin D3 in the parathyroid glands of patients with renal failure. N Engl J Med 1987;316:1573–7.

    PubMed  CAS  Google Scholar 

  87. Merke J, Hugel U, Zlotkowski A, et al. Diminished parathyroid 1,25(OH)2D3 receptors in experimental uremia. Kidney Int 1987;32:350–3.

    PubMed  CAS  Google Scholar 

  88. Brown AJ, Dusso A, Lopez-Hilker S, et al. 1,25-(OH)2D receptors are decreased in parathyroid glands from chronically uremic dogs. Kidney Int 1989;35:19–23.

    PubMed  CAS  Google Scholar 

  89. Szabo A, Merke J, Thomasset M, et al. No decrease of 1,25(OH)2D3 receptors and duodenal calbindin-D9k in uraemic rats. Eur J Clin Invest 1991;21:521–6.

    PubMed  CAS  Google Scholar 

  90. Costa EM, Feldman D. Homologus up-regulation of the 1,25(OH)2 vitamin D3 receptor in rats. Biochem Biophys Res Commun 1986;137:742–7.

    PubMed  CAS  Google Scholar 

  91. Reinhardt TA, Horst RL. Parathyroid hormone down-regulates 1,25-dihydroxyvitamin D receptors (VDR) and VDR messenger ribonucleic acid in vitro and blocks homologous up-regulation of VDR in vivo. Endocrinology 1990;127:942–8.

    PubMed  CAS  Google Scholar 

  92. Goff JP, Reinhardt TA, Beckman MJ, et al. Contrasting effects of exogenous 1,25-dihydroxyvitamin D [1,25-(OH)2D] versus endogenous 1,25-(OH)2D, induced by dietary calcium restriction, on vitamin D receptors. Endocrinology 1990;126:1031–5.

    PubMed  CAS  Google Scholar 

  93. O’Malley B. The steroid receptor superfamily: more excitement predicted for the future. Mol Endocrinol 1990;4:363–9.

    PubMed  CAS  Google Scholar 

  94. Umesono K, Evans RM. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 1989;57:1139–46.

    PubMed  CAS  Google Scholar 

  95. Umesono K, Murakami KK, Thompson CC, et al. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 1991;65:1255–66.

    PubMed  CAS  Google Scholar 

  96. Pike JW. Evidence for a reactive sulfhydryl in the DNA binding domain of the 1,25-dihydroxyvitamin D3 receptor. Biochem Biophys Res Commun 1981;100:1713–9.

    PubMed  CAS  Google Scholar 

  97. Cake MH, DiSorbo DM, Litwack G. Effect of pyridoxal phosphate on the DNA binding site of activated hepatic glucocorticoid receptor. J Biol Chem 1978;253:4886–91.

    PubMed  CAS  Google Scholar 

  98. Mulder E, Vrij L, Foekens JA. Inhibition of nucleic acid and chromatin binding of the rat prostate androgen receptor by pyridoxal phosphate, heparin and Cibacron blue. Steroids 1980;36:633–45.

    PubMed  CAS  Google Scholar 

  99. Muller RE, Traish A, Wotiz HH. Effects of pyridoxal 5′-phosphate on uterine estrogen receptor. I. Inhibition of nuclear binding in cell-free system and intact uterus. J Biol Chem 1980;255:4062–7.

    PubMed  CAS  Google Scholar 

  100. Nishigori H, Toft D. Chemical modification of the avian progesterone receptor by pyridoxal 5′-phosphate. J Biol Chem 1979;254:9155–61.

    PubMed  CAS  Google Scholar 

  101. Pike JW. Emerging concepts on the biologic role and mechanism of action of 1,25-dihydroxyvitamin D3. Steroids 1987;49:3–27.

    PubMed  CAS  Google Scholar 

  102. Sone T, Kerner S, Pike JW. Vitamin D receptor interaction with specific DNA. Association as a 1,25-dihydroxyvitamin D3-modulated heterodimer. J Biol Chem 1991;266:23296–305.

    PubMed  CAS  Google Scholar 

  103. Hughes MR, Malloy PJ, Kieback DG, et al. Point mutations in the human vitamin D receptor gene associated with hypocalcemic rickets. Science 1988;242:1702–5.

    PubMed  CAS  Google Scholar 

  104. Sone T, Scott RA, Hughes MR, et al. Mutant vitamin D receptors which confer hereditary resistance to 1,25-dihydroxyvitamin D3 in humans are transcriptionally inactive in vitro. J Biol Chem 1989;264:20230–4.

    PubMed  CAS  Google Scholar 

  105. Sone T, Marx SJ, Liberman UA, et al. A unique point mutation in the human vitamin D receptor chromosomal gene confers hereditary resistance to 1,25-dihydroxyvitamin D3. Mol Endocrinol 1990;4:623–31.

    PubMed  CAS  Google Scholar 

  106. Malloy PJ, Hochberg Z, Tiosano D, et al. The molecular basis of hereditary 1,25-dihydroxyvitamin D3 resistant rickets in seven related families. J Clin Invest 1990;86:2071–9.

    PubMed  CAS  Google Scholar 

  107. Malloy PJ, Hochberg Z, Pike JW, et al. Abnormal binding of vitamin D receptors to deoxyribonucleic acid in a kindred with vitamin D-dependent rickets, type II. J Clin Endocrinol Metab 1989;68:263–9.

    PubMed  CAS  Google Scholar 

  108. Hirst MA, Hochman HI, Feldman D. Vitamin D resistance and alopecia: a kindred with normal 1,25-dihydroxyvitamin D binding, but decreased receptor affinity for deoxyribonucleic acid. J Clin Endocrinol Metab 1985;60:490–5.

    PubMed  CAS  Google Scholar 

  109. Chandler JS, Chandler SK, Pike JW, et al. 1,25-Dihydroxyvitamin D3 induces 25-hydroxyvitamin D3-24-hydroxylase in a cultured monkey kidney cell line (LLC-MK2) apparently deficient in the high affinity receptor for the hormone. J Biol Chem 1984;259:2214–22.

    PubMed  CAS  Google Scholar 

  110. Pike JW, Haussler MR. Association of 1,25-dihydroxyvitamin D3 with cultured 3T6 mouse fibroblasts. Cellular uptake and receptor-mediated migration to the nucleus. J Biol Chem 1983;258:8554–60.

    PubMed  CAS  Google Scholar 

  111. Patel S, Ke HQ, Vanholder R, et al. Inhibition of nuclear uptake of calcitriol receptor by uremic ultrafiltrate. Kidney Int 1994;46:129–33.

    PubMed  CAS  Google Scholar 

  112. Pike JW, Sleator NM. Hormone-dependent phosphorylation of the 1,25-dihydroxyvitamin D3 receptor in mouse fibroblasts. Biochem Biophys Res Commun 1985;131:378–85.

    PubMed  CAS  Google Scholar 

  113. Brown TA, DeLuca HF. Phosphorylation of the 1,25-dihydroxyvitamin D3 receptor. A primary event in 1,25-dihydroxyvitamin D3 action. J Biol Chem 1990;265:10025–9.

    PubMed  CAS  Google Scholar 

  114. Ross TK, Moss VE, Prahl JM, et al. A nuclear protein essential for binding of rat 1,25-dihydroxyvitamin D3 receptor to its responsive elements. Proc Natl Acad Sci USA 1992;89:256–60.

    PubMed  CAS  Google Scholar 

  115. Carlberg C, Bendik I, Wyss A, et al. Two nuclear signalling pathways for vitamin D. Nature 1993;361:657–60.

    PubMed  CAS  Google Scholar 

  116. Bro S, Olgaad K. Effect of excess PTH on nonclassical target organs. Am J Kidney Dis 1997;30:606–20.

    PubMed  CAS  Google Scholar 

  117. Akizawa T, Kamimura M, Mizobuchi M, et al. Management of secondary hyperparathyroidism of dialysis patients. Nephron 2003 (Suppl):S53–7.

    Google Scholar 

  118. Cannella G, Bonucci E, Rolla D, et al. Evidence of healing of secondary hyperparathyroidism in chronically hemodialized uremic patients treated with long-term intravenous calcitriol. Kid int 1994;46:1124–32.

    CAS  Google Scholar 

  119. McDonnell DPM, David J, Pike J, Wesley, Haussler, et al. Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science. 1987;235 (March):1214–7;65 (June):1255–66; 1991, et al.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hsu, C.H. (2006). Calcitriol Metabolism and Action in Chronic Renal Disease. In: Hsu, C.H. (eds) Calcium and Phosphate Metabolism Management in Chronic Renal Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33370-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-33370-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-33369-4

  • Online ISBN: 978-0-387-33370-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics