Skip to main content

Part of the book series: Power Electronics and Power Systems ((PEPS))

  • 1799 Accesses

Abstract

In the previous chapters the continuation based approaches to study steady state aspects of voltage stabihty are presented. We still need time domain simulations to capture the transient response and timing of control actions. The time domain response can capture the evolvement of the instability process to provide the timing issues of controls. To capture the transient response a set of differential and algebraic equations (DAE) are numerically solved. Power systems networks typically include a large number of dynamic and static components, where each individual component may need several differential and algebraic equations to represent, thus the total number of differential and algebraic equations of a real power system can be quite large.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astic, J. Y., Bihain, A., Jerosolimski, M., “The mixed Adams-BDF variable step size algorithm to simulate transient and long-term phenomena in power systems”, IEEE Transactions on Power Systems, vol. 9, pp.929–935, May 1994.

    Google Scholar 

  2. Iavernaro, F., Scala, M. L., Mazzia, F., “Boundary values methods for time-domain simulation of power system dynamic behavior”, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 45, pp.50–63, Jan 1998.

    Google Scholar 

  3. Liu, C.-W., Thorp, James S., “New methods for computing power system dynamic response for real-time transient stability prediction”, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 47, pp.324–337, March 2000.

    Google Scholar 

  4. Fankhauser, H., Aneros, K., Edris, A., Torseng, S., “Advanced simulation techniques for the analysis of power system dynamics”, IEEE Computer Applications in Power, vol. 3, pp.31–36, Oct 1990.

    Google Scholar 

  5. Kurita, A., Okubo, H., Oki, K., Agematsu, S., Klapper, D.B., Miller, N. W., Price, W.W., Sanchez-Gasca, J.J., Wirgau, K.A., Younkins, T.D., “Multiple time-scale power system dynamic simulation”, IEEE Transactions on Power Systems, vol. 8, pp.216–223, Feb 1993.

    Google Scholar 

  6. Stubbe, M., Bihain, A., Deuse, J., Baader, J.C., “STAG-a new unified software program for the study of the dynamic behaviour of electrical power systems”, IEEE Transactions on Power Systems, vol. 4, pp.l29–138, Feb 1989.

    Google Scholar 

  7. Stubbe, M and Deuse, J, “Dynamic Simulation of Voltage Collapses” IEEE Transactions on Power Systems, Vol.8, No.3, pp.894–904, August 1993

    Article  Google Scholar 

  8. Vernotte, P., Panciatici, B., Myers, J.P., Antoine, J., Deuse, J., and Stubbe, M., “High fidelity simulation power system dynamics,” IEEE Comput. Appl. Power, vol. 8, no. 1, pp. 37–41, Jan. 1995

    Article  Google Scholar 

  9. Sanchez-Gasca, J.J., R. D’Aquila, Paserba, J.J., Price, W.W., Klapper, D.B., and Hu, I.P., “Extended-term dynamic simulation using variable time step integration,” IEEE Comput. Appl. Power, vol. 6, no. 4, pp. 23–28, Oct. 1993.

    Article  Google Scholar 

  10. Zhou, Y., Ajjarapu, V., “A Novel Approach to Trace Time Domain Trajectories of Power Systems in Multiple Time Scales, IEEE Transactions On Power Systems, Vol.20, No. 1, 149–155, February 2005.

    Article  Google Scholar 

  11. Ascher, U.M., Petzold, Linda R., Computer methods for ordinary differential equations and differential-algebraic equations, Philadelphia: Society for Industrial and Applied Mathematics, 1998.

    MATH  Google Scholar 

  12. Hairer, E., Wanner, G., Solving ordinary differential equations II: stiff and differential-algebraic problems, Springer-Verlag, 1991.

    Google Scholar 

  13. Lambert, J. D., Numerical methods for ordinary differential systems: the initial value problems, Wiley, 1991.

    Google Scholar 

  14. Iserles, A., A first course in the numerical analysis of differential equations, Cambridge University Press, 1996.

    Google Scholar 

  15. Deuflhard, P., Bornemann, F., Scientific computing with ordinary differential equations, Springer, 2002.

    Google Scholar 

  16. Butcher, J.C., “Numerical methods for ordinary differential equations in the 20th century”, Numerical analysis: historical developments in the 20th century, edited by C. Brezinski, L. Wuytack, Elsevier, 2001

    Google Scholar 

  17. Janovsky, V., Liberda, O., “Continuation of invariant subspaces via the recursive projection method”, Applications of Mathematics, vol.48, pp.241–255, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  18. Shroff, G.M., Keller, H.B., “Stabilization of unstable procedures: the recursive projection method”, SIAM Journal on Numerical Analysis, vol.30, pp. 1099–1120, August, 1993.

    Google Scholar 

  19. Sauer, P. W., Pai, M. A., Power System Dynamics and Stability, Prentice-Hall Inc, 1998.

    Google Scholar 

  20. Feng, Z., Ajjarapu, V., Long, B., “Identification of voltage collapse through direct equilibrium tracing”, IEEE Transactions on Power Systems, vol.15, pp.342–349, February 2000.

    Google Scholar 

  21. Golub, G. H., Loan, C. V., Matrix Computations, Johns Hopkins University Press, Baltimore, MD, 1983

    MATH  Google Scholar 

  22. Yang, D., Ajjarapu, V., “A decoupled time-domain simulation method via invariant subspace partition for power system analysis,” IEEE Transactions on Power Systems, vol.21, no.1, February 2006

    Google Scholar 

  23. Van Cutsem, T., Vournas, C, Voltage Stability of Electric Power Systems, Kluwer Academic Publishers, Norwell, MA, 1998.

    Google Scholar 

  24. Van Cutsem, T., Jacquemart, Y., Marquet, J., Pruvot, P., “A comprehensive analysis of mid-term voltage stability,” IEEE Trans. on Power Systems, vol. 10, no. 2, pp. 1173–1182, May 1995.

    Article  Google Scholar 

  25. Van Cutsem, T., “An approach to corrective control of voltage instability using simulation and sensitivity,” IEEE Trans. on Power Systems, vol. 10, no.2, pp. 616–622, May 1995.

    Article  Google Scholar 

  26. Van Cutsem, T., Mailhot, R., “Validation of a fast voltage stability analysis method on the hydro-quebec system,” IEEE Trans. on Power Systems, vol. 12, no.1, pp. 282–292, Feb. 1997.

    Article  Google Scholar 

  27. Van Cutsem, T., Vournas, C.D., “Voltage stability analysis in transient and mid-term time scales,” IEEE Trans. on Power Systems, vol. 11, no.1, pp. 146–154, Feb. 1996.

    Article  Google Scholar 

  28. Wang, Q., Song, H., Ajjarapu, V., “Continuation Based Quasi-Steady-State Analysis,” IEEE Transactions on Power Systems, vol.21, no.1, February 2006

    Google Scholar 

  29. Karlsson, D., Hill, D. J., “Modeling and identification of nonlinear dynamic loads in power systems,” IEEE Trans. on Power Systems, vol. 9, no. 1, Feb. 1994, pp. 157–166.

    Article  Google Scholar 

  30. Hill, D. J., “Nonlinear dynamic load models with recovery for voltage stability studies,” IEEE Trans. on Power Systems, vol. 8, no. 1, Feb. 1993, pp. 166–172.

    Article  Google Scholar 

  31. Wang, Q., Ajjarapu, V., “A novel approach to implement generic load restoration in continuation-based quasi-steady-state analysis,” IEEE PES Technical Letters, PESL-00076-2002, 17 May 2004–1 July 2004.

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

(2006). Time Domain Simulation. In: Ajjarapu, V. (eds) Computational Techniques for Voltage Stability Assessment and Control. Power Electronics and Power Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-32935-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-32935-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-26080-8

  • Online ISBN: 978-0-387-32935-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics