Skip to main content

Part of the book series: Power Electronics and Power Systems ((PEPS))

Abstract

As mentioned in the previous chapter, the continuation method is a mathematical path-following methodology used to solve systems of nonlinear equations. The numerical derivation of this method is shown in [1]. Using the continuation method, we can track a solution branch around the turning point without difficulty. This makes the continuation method quite attractive in approximations of the critical point in a power system. The continuation power flow captures this path-following feature by means of a predictor-corrector scheme that adopts locally parameterized continuation techniques to trace the power flow solution paths. The next sections explain the principles of continuation power flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allgower, E. L. and Gearg, K., Numerical Continuation Methods. Springer-Verlag, 1990

    Google Scholar 

  2. Seydel, R., From equilibrium to chaos, Elsevier Science, 1988

    Google Scholar 

  3. Rheinboldt, W.C., “Solutions fields of nonlinear equations and continuation methods,” SIAM J. Num. Anal., Vol. 17, 1980, pp. 221–237

    Article  MATH  MathSciNet  Google Scholar 

  4. Christy, C.D., Analysis of steady state voltage stability in large scale power systems, M.S. Thesis, Iowa State University, Ames, IA, 1990

    Google Scholar 

  5. Ajjarapu, V. and Christy, Colin, “The Continuation Power Flow: A Tool to Study Steady State Voltage Stability,” IEEE Transactions on Power Systems, Vol. 7, No. 1, pp. 416–423, Feb. 1992

    Article  Google Scholar 

  6. Kundur, P., Power system stability and control, McGraw Hill, 1994

    Google Scholar 

  7. Sauer, P. W., Pai, M. A., “Power system steady-state stability and the load flow jacobian,” IEEE Trans. on power systems, 1990, 1374–1383

    Google Scholar 

  8. Arrillaga, J., Smith, B., AC-DC power systems analysis, The Institution of Electrical Engineers, London, UK, 1998

    Google Scholar 

  9. Arabi, S. and Kundur, P.,“A versatile FACTS device model for power flow and stability simulations” IEEE Transactions on Power Systems, Volume 11, Issue 4, Nov. 1996 Page(s): 1944–1950

    Article  Google Scholar 

  10. Iowa State University’s Web Based Voltage Stability Search Engine http://design-2.ece.iastate.edu/biblio/

    Google Scholar 

  11. Guckenheimer, J., Holmes, P.J., Nonlinear oscillations, dynamical systems, and bifurcation of vector fields, New York: Springer-Velag, 1983

    Google Scholar 

  12. Illic, M., Zaborsky, J., Dynamics and control of large electric power systems, John Wiley & Sons, New York, 2000

    Google Scholar 

  13. Kim, K., Schattler, H., Venkatasubramanian, V., Zaborsky, J., Hirsch, P., “Mehods for calculating oscillations in large power systems,” IEEE Trans. on power systems, Vol.12, 1997, pp. 1639–1648

    Article  Google Scholar 

  14. Rheinboldt, W.C., Numerical analysis of parameterized nonlinear equations, New York: John Wiley & Sons, 1986

    Google Scholar 

  15. Souza, De A.C.Z., Canizares, C.A., Quintana, V.H., “New techniques to speed up voltage collapse computations using tangent vectors,” IEEE Trans. on power systems, Vol.12, 1997, 1380–1387

    Article  Google Scholar 

  16. Dai, R., Rheinboldt, W.C., “On the computation of manifolds of fold-points for parameter-dependent problems,” SIAM J. Numer. Anal, Vol. 27, no. 2, 1990, pp. 437–446.

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhou, Y., Ajjarapu, V., “A fast algorithm for identification and tracing of voltage and oscillatory stability margin boundaries,” Proceedings of the IEEE, Vol. 93, no. 5, 2005, pp.934–946

    Article  Google Scholar 

  18. Dobson, I., Lu, L., “Voltage collapse precipitated by the immediate change in stability when generator reactive power limits are encountered,” IEEE Trans. on Circuits and Syst., Vol. 39:9, pp.762–766, 1992

    Article  Google Scholar 

  19. Anderson, P.M., Fouad, A.A., Power System Stability and Control, New York: IEEE PES Press, 1994

    Google Scholar 

  20. Long, B., The detection of dynamic voltage collapse and transfer margin estimation, M.S. Thesis, Iowa State University, Ames, IA, 1997

    Google Scholar 

  21. Hill, D. J., Nonlinear dynamic load models with recovery for voltage stability studies, IEEE Trans. on Power Syst., vol.8:1, pp.166–172, 1993

    Article  Google Scholar 

  22. Van Cutsem, T., Vournas, C, Voltage stability of electric power systems, Kluwer, 1998

    Google Scholar 

  23. Iba, K., Suzuki, H., Egawa, M., Watanabe, T., Calculation of critical loading condition with nose curve using homotopy continuation method, IEEE Transactions on Power Systems, Volume 6, Issue 2, pp.584–593, May 1991

    Article  Google Scholar 

  24. Canizares, C. and A., Alvarado, “Point of collapse and continuation methods for large AC/DC power systems,” IEEE Transactions on Power Systems, vol.8, no.1, February 1993, pp.1–8

    Article  Google Scholar 

  25. Canizares, C. A., Alvarado, F. L., Demarco, C. L., Dobson, I. and Long, W. F., “Point of collapse methods applied to AC/DC power systems,” IEEE Trans. on Power Systems, vol.7, no.2, pp. 673–683, 1992

    Article  Google Scholar 

  26. Chiang, H.D., Flueck, A.J., Shah, K.S., and Balu, N., “CPFLOW: a practical tool for tracing power system steady-state stationary behavior due to load and generation variations,” IEEE Trans. on power systems, PWRS-10, May 1995, pp.623–634

    Google Scholar 

  27. Flueck, A.J., Dondeti, J.R., “A new continuation power flow tool for investigating the nonlinear effects of transmission branch parameter variations, ” IEEE Trans. on power systems, vol. 15:1, pp.223–227, 2000

    Article  Google Scholar 

  28. Denis Lee Hau Aik and Anderson, G. “Quasi-static stability of HVDC systems considering dynamic effects of synchronous machines and excitation voltage control,” IEEE transactions on Power Delivery, Volume 21, Issue 3, July 2006 pp:1501–1514

    Article  Google Scholar 

  29. Canizares, C.A. and Faur, Z.T. “Analysis of SVC and TCSC controllers in voltage collapse” IEEE Transactions on Power Systems, Volume 14, Issue 1, Feb. 1999 Page(s): 158–165

    Article  Google Scholar 

  30. Wen, X., Ajjarapu, V., “Application of a Novel Eigenvalue Trajectory Tracing Method to Identify Both Oscillatory Stability Margin and Damping Margin,” IEEE Transactions on Power Systems, Volume 21, May 2006, pp. 817–824

    Google Scholar 

  31. Yang, D. and Ajjarapu, V., “Critical Eigenvalues Tracing for Power System Analysis via Continuation of Invariant Subspaces and Projected Arnoldi Method,” to appear in IEEE Trans. on Power Systems

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

(2006). Continuation Power Flow. In: Ajjarapu, V. (eds) Computational Techniques for Voltage Stability Assessment and Control. Power Electronics and Power Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-32935-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-32935-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-26080-8

  • Online ISBN: 978-0-387-32935-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics