Skip to main content

Part of the book series: Power Electronics and Power Systems ((PEPS))

  • 1748 Accesses

Abstract

Nonlinear phenomena relate to the processes that involve physical variables which are governed by nonlinear equations. The models which are described by these equations have been obtained by some approximate projection rationale from presumably more fundamental microscopic dynamics of the system. In some cases a reasonable projection may yield simple linear equations in some approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blaquiere, A., Nonlinear system analysis New York: Academic Press 1966

    Google Scholar 

  2. Jordan, D. W., Smith, P., Nonlinear ordinary differential equations. Oxford: University Press 1977

    MATH  Google Scholar 

  3. Reyn, J. W., Classification and description of the singular points of a system of three linear differential equations, J. Appl. Math, Phys. 15: 540–555, 1964

    Article  MATH  MathSciNet  Google Scholar 

  4. Ajjarapu, V., “The Role of Bifurcation and Continuation Methods in the Analysis of Voltage Collapse,” Sadhana, Vol. 18, No. 5, pp. 829–841, September 1993

    MATH  MathSciNet  Google Scholar 

  5. Guckenheimer, J., Holmes, P. J., Nonlinear oscillations, dynamical systems, and bifurcation of vector fields. New York: Springer-Verlag 1983

    Google Scholar 

  6. Carr, J., Applications of center manifold theory. Applied Math. Sciences. Vol. 35 New York: Springer-Verlag 1981

    Google Scholar 

  7. Haken, H., Synergetics, an introduction 3rd ed. Berlin: Springer 1983

    MATH  Google Scholar 

  8. Arnold, V. I., Lectures on bifurcation in versal families. Russ. Math. Survey 27:54–123 1972

    Article  Google Scholar 

  9. Bruno, A. D., Local methods in nonlinear differential equations Berlin: Springer-Verlag 1989

    MATH  Google Scholar 

  10. Thapar, J., Vittal, V., Kliemann, W., Fouad, A. A., Application of the normal form of vector fields to predict interarea separation in power systems. IEEE Transactions on Power Systems, Vol.12: 844–850 May 1997

    Google Scholar 

  11. Dobson, I., Barocio, E., Scaling of normal form analysis coefficients under coordinate change. IEEE Transactions on Power Systems Vol. 19: 1438–1444 Aug. 2004

    Google Scholar 

  12. Ajjarapu, V., Lee, B. Bifurcation theory and its application to nonlinear dynamical phenomenon in an electric power system. IEEE Trans. Power System 7:424–431 1992

    Article  Google Scholar 

  13. Chiang, H. D., Liu, C. W., Varaiya, P. P., Wu, F. F., Lauvy, M. G., Chaos in a simple power system, IEEE Transactions on Power Systems, Vol. 8, no.4, pp. 1407–1417, Nov. 1993

    Article  Google Scholar 

  14. Rajgopalan, C, Sauer, P. W., Pai, M. A., Analysis of voltage control system exhibiting Hopf bifurcation. IEEE proceedings of the 28th conference on Decisions and Control New York 1989

    Google Scholar 

  15. Riks, E., An incremental approach to the solution of snapping and buckling problems. Int. J. Solids Struct. 15: 529–551 1979

    Article  MATH  MathSciNet  Google Scholar 

  16. Dobson, I., Chiang. H. D., Toward a theory of voltage collapse in electric power systems. Systems and control letters, Vol. 13: 253–262 1990

    Article  MathSciNet  Google Scholar 

  17. Dobson, I., Observations on the geometry of saddle node bifurcations and voltage collapse in electric power systems. IEEE Trans. on CAS, part I, Vol. 39 240–243 1992

    Article  Google Scholar 

  18. Halvacek, V (ed.)., Chaos (Singapore: World Scientific) 1990

    Google Scholar 

  19. Moon, F. C., Chaotic Vibration (New York: Wiley) 1987

    Google Scholar 

  20. Thomson, J. M. T., Stewart, H. B., Nonlinear dynamical systems and chaos (New York: Springer Verlag) 1986

    Google Scholar 

  21. Holmes, P. J. (ed.)., New approaches to nonlinear problems in dynamics Philadelphia: Siam 1980

    MATH  Google Scholar 

  22. Venkatasubramanian, V., Juan, Li., Study of Hopf bifurcations in a simple power system model. Proceedings of the 39th IEEE Conference on Decision and Control, Vol. 4 Page:3075–3079 Dec. 2000

    Google Scholar 

  23. Allgower, E. L., Georg, K., Numerical continuation methods Berlin: Springer 1990

    MATH  Google Scholar 

  24. Kincaid, D., Cheney, W., Numerical anlaysis. California: Pacific grove 1991

    Google Scholar 

  25. Seydel, R., From equilibrium to chaos (New York: Elsevier Science) 1988

    MATH  Google Scholar 

  26. Davidenko, D., On a new method of numerically integrating a system of nonlinear equations. Dokl., Akad. Nauk, USSR 88:601–604 1953

    MATH  MathSciNet  Google Scholar 

  27. Rheinboldt, W. C., Numerical analysis of parametrized nonlinear equations. (New York: John Wiley & Sons) 1986

    MATH  Google Scholar 

  28. Rheinboldt, W. C, Burkhardt, J. V., A locally parameterized continuation process. ACM Trans. Math. Software 9: 215–235 1983

    Article  MATH  MathSciNet  Google Scholar 

  29. Abbot, J. P., An efficient algorithm for the determination of certain bifurcation points. J. Comput. Appl. Math. 4: 19–27 1978

    Article  MathSciNet  Google Scholar 

  30. Moore, G., Spence, A., The calculation of turning points of nonlinear equations. SIAM J. Numer. Anal. 17: 567–576 1980

    Article  MATH  MathSciNet  Google Scholar 

  31. Griewank, A., Reddien, G. W., Characterization and computation of generalized turning points. SIAM J. Numer. Anal. 21: 176–185 1984

    Article  MATH  MathSciNet  Google Scholar 

  32. Seydel, R., Numerical computation of periodic orbits that bifurcate from the stationary solution of ordinary differential equation. Appl. Math. Comput. 9: 257–271 1979

    Article  MathSciNet  Google Scholar 

  33. Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos New York: Springer-Verlag 1990

    MATH  Google Scholar 

  34. Ajjarapu, V., Identification of steady state voltage stability in power systems. Int. J. Energy Syst. 11: 43–46 1991

    Google Scholar 

  35. Alvarado, F. L., Jung, T. H., Direct detection of voltage collapse conditions. Proceedings: Bulk Power System Voltage Phenomenon-Voltage Stability and Security, EPRI EL-6183, Project 2473-21, Electric Power Research Institute 1989

    Google Scholar 

  36. Dobson, I., Lu, L., Computing an optimum direction in control space to avoid saddle node bifurcations and voltage collapse in electric power systems. IEEE Trans. on automatic control, Vol. 37 1616–1620 1992

    Article  MathSciNet  Google Scholar 

  37. Dobson, I., Computing a closest bifurcation instability in multidimensional parameter space. Journal of nonlinear science, Vol. 3, No. 3: 307–327 1993

    Article  MATH  MathSciNet  Google Scholar 

  38. Dobson, I., Lu, L., New methods for computing a closest saddle node bifurcation and worst case load power margin for voltage collapse. IEEE Trans. on power systems, Vol. 8: 905–913 1993

    Article  Google Scholar 

  39. Allgower, E. L., Georg, k., Numerical continuation methods Berlin: Springer 1990

    MATH  Google Scholar 

  40. Kubicek, M., Marek, M., Computational methods in bifurcation theory and dissipative structures (New York: Springer-Verlag) 1983

    MATH  Google Scholar 

  41. Marsden, J. E., McCracken, M., The hopf bifurcation and its application (New York: Springer) 1976

    Google Scholar 

  42. Hassard, B. D., Kazirinoff, N. D., Wan, Y. H., Theory and applications of Hopf bifurcation Cambridge: University Press 1981

    MATH  Google Scholar 

  43. Griewank, A., Reddien, G., The calculation of Hopf bifurcation by direct method. Inst. Math. Appl. J. Numer. Anal. 3: 295–303 1983

    MATH  MathSciNet  Google Scholar 

  44. Roose, D., An algorithm for the computation of Hopf bifurcation points in comparison with other methods. J. Comput. Appl. Math. 12 & 13: 517–529 1985

    Article  MathSciNet  Google Scholar 

  45. Rajagopalan, C., Lesieutre, B., Sauer, P. W., Pai, M.A., Dynamic aspects of voltage/power characteristics, IEEE Trans. on power systems, Vol. 7, no.3, pp. 990–1000, Aug. 1992

    Article  Google Scholar 

  46. Arnold, V. I., Geometric methods in the theory of ordinary differential equations New York: Springer 1983

    Google Scholar 

  47. Lin, H. B., Chaos II World Scientific Pub. Co. 1990

    Google Scholar 

  48. Parker, T. S., Chua, L., Practical numerical algorithms for chaotic systems. (New York: Springer) 1989

    MATH  Google Scholar 

  49. Nayfeh, M. A., Hamdan, A. M. A., Nayfeh, A. H., Chaos and instability in a power system: primary resonant case. Nonlinear Dynamics 1: 313–339 1990

    Article  Google Scholar 

  50. Pai, M.A., Sen Gupta D.P, and Padiyar K.R. “Small Signal Analysis of Power Systems” Originally Published by Narosa Publishing House and Co-Published by Alpha Science International Limited, Oxford, U.K., 2004

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

(2006). Numerical Bifurcation Techniques. In: Ajjarapu, V. (eds) Computational Techniques for Voltage Stability Assessment and Control. Power Electronics and Power Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-32935-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-32935-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-26080-8

  • Online ISBN: 978-0-387-32935-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics