Skip to main content
  • 5309 Accesses

Abstract

Capturing comovement between financial asset returns with linear correlation has been the staple approach in modern finance since the birth of Harry Markowitz’s portfolio theory. Linear correlation is the appropriate measure of dependence if asset returns follow a multivariate normal (or elliptical) distribution. However, the statistical analysis of the distribution of individual asset returns frequently finds fat tails, skewness, and other non-normal features. If the normal distribution is not adequate, then it is not clear how to appropriately measure the dependence between multiple asset returns. Fortunately, the theory of copulas provides a flexible methodology for the general modeling of multivariate dependence. As Cherubini, Luciano, and Vecchiato (2004) state the following in the introduction to their book: “the copula function methodology has become the most significant new technique to handle the co-movement between markets and risk factors in a flexible way.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

19.7 References

  • Capéraà, P., A.-L. Fourgères, and C. Genest (2000). “Bivariate Distributions with Given Extreme Value Attractor,” Journal of Multivariate Analysis, 72, 30–49.

    Article  MATH  MathSciNet  Google Scholar 

  • Carmona, R. (2004). Statistical Analysis of Financial Data in Splus. Springer-Verlag, New York.

    Google Scholar 

  • Carmona, R. and J. Morrisson (2001). “Heavy Tails and Copulas with Evanesce,” ORFE Tech. Report, Princeton University, Princeton, NJ.

    Google Scholar 

  • Cherubini, U., E. Luciano and W. Vecchiato (2004). Copula Methods in Finance. John Wiley & Sons, New York.

    MATH  Google Scholar 

  • Clayton, D.G. (1978). “A Model for Association in Bivariate Life Tables and Its Application in Epidemiological Studies of Familial Tendency in Chronic Disease Incidence,” Biometrika, 65, 141–151.

    Article  MATH  MathSciNet  Google Scholar 

  • Deheuvels, P. (1978). “Caractérisation Compléte des lois Extrêmes Multivari ées et de la Convergence des Types Extêmes,” Publications de l’Institut de. Statistique de l’Université de Paris, 23, 1–36.

    MATH  Google Scholar 

  • Embrechts, P. C., F. Lindskog and A. McNeil (2003). “Modelling Dependence with Copulas and Applications to Risk Management,” in S.T. Rachev (ed.) Handbook of Heavy Tailed Distributions in Finance, Pronide Publisher.

    Google Scholar 

  • Embrechts, P., A. McNeil and D. Straumann (2000). “Correlation and Dependence in Risk Management: Properties and Pitfalls,” in M. Dempster and H. K. Moffatt (eds.) Risk Management: Value at Risk and Beyond, Cambridge University Press, Cambridge.

    Google Scholar 

  • Frank, M.J. (1979). “On the Simultaneous Associativity of f (x,y) and x + yf (x,y),” Aequationes Mathematiques, 19, 194–226.

    Article  MATH  Google Scholar 

  • Frees, E.W. and E. Valdez (1998). “Understanding Relationships Using Copulas,” North American Actuarial Journal, 2, 1–25.

    MATH  MathSciNet  Google Scholar 

  • Galambos, J. (1975). “Order Statistics of Samples from Multivariate Distributions,” Journal of American Statistical Association, 70, 674–680.

    Article  MathSciNet  Google Scholar 

  • Genest, C. and R. J. MacKay (1986). “Copules Archimédiennes et Familles de lois Bidimensionnelles dont les Marges sont Données,” Canadian Journal of Statistics, 14, 145–159

    Article  MATH  MathSciNet  Google Scholar 

  • Genest, C. and L.-P. Rivest (1993). “Statistical Inference Procedures for Bivariate Archimedean Copulas,” Journal of American Statistical Association, 88(423), 1034–1043.

    Article  MATH  MathSciNet  Google Scholar 

  • Gumbel, E. J. (1960). “Distributions des Valeurs Extrêmes en Plusiers Dimensions,” Publications de l’Institut de. Statistique de l’Université Paris, 9, 171–173.

    MATH  MathSciNet  Google Scholar 

  • Hüsler, J. and R.-D. Reiss (1989). “Maxima of Normal Random Vectors: Beween Independence and Complete Dependence, Statistics and Probability Letters, 7, 283–286.

    Article  MATH  MathSciNet  Google Scholar 

  • Joe, H. (1993). “Parametric Families of Multivariate Distributions with Given Margins,” Journal of Multivariate Analysis, 46, 262–282.

    Article  MATH  MathSciNet  Google Scholar 

  • Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman & Hall, London.

    MATH  Google Scholar 

  • Joe, H. and J. Xu (1996). “The Estimation Method of Inference Functions for Margins for Multivariate Models,” Technical Report No. 166, Department of Statistics, University of British Columbia, Vancouver.

    Google Scholar 

  • Kimeldorf, G. and Sampson, A.R. (1975). “Uniform Representations of Bivariate Distributions,” Communications in Statistics, 4, 617–627.

    Article  MathSciNet  Google Scholar 

  • Morrison, J.E. (2001). Extreme Value Statistics with Applications in Hydrology and Financial Engineering, Ph.D. thesis, Princeton University, Princeton, NJ.

    Google Scholar 

  • Nelson, R. B. (1999). An Introduction to Copulas, Lecture Notes in Statistics. Springer-Verlag, New York.

    Google Scholar 

  • RiskMetrics, 1995. “RiskMetrics Technical Document,” 3rd ed., J.P. Morgan, New York.

    Google Scholar 

  • Sklar, A. (1959). “Fonctions de Répartition à n Dimensions et Leurs Marges,” Publications de l’Institut de. Statistique de l’Université de Paris 8, 229–231.

    MathSciNet  Google Scholar 

  • Tawn, J. A. (1988). “Bivariate Extreme Value Theory: Models and Estimation,” Biometrika, 75, 397–415.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2006). Copulas. In: Modeling Financial Time Series with S-PLUS®. Springer, New York, NY. https://doi.org/10.1007/978-0-387-32348-0_19

Download citation

Publish with us

Policies and ethics