Skip to main content

Sound, which is an important carrier of information for human communication, propagates in elastic media as waves. A sound wave arriving from a sound source, however, deforms as it travels in a space due to the elastic and geometrical conditions of the medium. A sound wave propagating in a space can be represented by a wave equation and is characterized by the transfer function (TF) between the sound source and receiving positions. This section describes the magnitude and phase characteristics, which represent the sound wave propagating from the sound source, in terms of the poles and zeros of the TF. Although the frequency characteristics in a reverberant space appear too irregular, spatial sound, which is a general term for sound propagating in a space, is necessary for daily communication. Room TF studies are important in processing spatial sound signals to obtain informative, high-quality sound in communication spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. H. Lyon, “Statistical analysis of power injection and response in structures and rooms,” J. Acoust. Soc. Am. 45 545–565 (1969)

    Article  ADS  Google Scholar 

  2. M. R. Schroeder, “Statistical parameters of the frequency response curves in large rooms,” J. Audio Eng. Soc. 35(5) 299–306} (1987)

    MathSciNet  Google Scholar 

  3. M. Tohyama, H. Suzuki and Y. Ando, Nature and Technology of Acoustic Space, Academic press, London UK (1995)

    Google Scholar 

  4. P. Morse and R. Bolt, “Sound waves in rooms,” Rev. Mod. Phys. 16 69–150 (1944)

    Article  ADS  Google Scholar 

  5. R. L. Weaver, “Spectral statistics in elastodynamics,” J. Acoust. Soc. Am. 85(3) 1005–1013 (1989)

    Article  ADS  Google Scholar 

  6. I. I. Gurevich and M.I. Pevsner, “Repulsion of nuclear levels,” Nuc. Phys. 2 575 (1957)

    Article  Google Scholar 

  7. Y. Fujisaka and M.Tohyama, “Eigenfrequency spacing analysis and eigenmode breakdown for semi-stadium type 2-D fields,” J. Sound & Vib. 267 867–878 (2003)

    Article  ADS  Google Scholar 

  8. M. Tohyama and Y. Fujisaka, “Room acoustics and chaos (in Japanese),” J. Acoust. Soc. Japan 53(2) 154–150 (1997)

    Google Scholar 

  9. M. Tohyama and R. Lyon, “Zeros of a transfer function in a multi-degree-of-freedom vibrating system,” J. Acoust. Soc. Am. 86(5) 1854–1863 (1989)

    Article  ADS  Google Scholar 

  10. R. Lyon, “Progressive phase trend in multi-degree-of-freedom systems,” J. Acoust. Soc. Am. 73(4) 1223–1228 (1983)

    Article  ADS  Google Scholar 

  11. R. Lyon, “Range and frequency dependence of transfer function phase,” J. Acoust. Soc. Am. 76(5) 1433–1437 (1984)

    Article  ADS  Google Scholar 

  12. M. Tohyama, R. Lyon and T. Koike, “Reverberant phase in a room and zeros in the complex frequency plane,” J. Acoust. Soc. Am. 89(4) 1701–1707 (1991)

    Article  ADS  Google Scholar 

  13. M. R. Schroeder, “Frequency correlation functions of frequency responses in rooms,” J. Acoust. Soc. Am. 34 1819–1823 (1962)

    Article  ADS  Google Scholar 

  14. S. O. Rice, “Mathematical analysis of random noise,” Bell Syst. Tech. J. 24 46–108 (1945)

    MATH  MathSciNet  Google Scholar 

  15. Y. Takahashi and M. Tohyama, “Artificial reverberation control using cepstrum decomposition while maintaining locations of peaks and dips on the frequency responses,” J. Audio Eng. Soc. 53(12) 1142–1151

    Google Scholar 

  16. K. J. Ebeling, “Statistical properties of random wave fields,” in W. P. Mason and R. V. Thurston (eds) Physical Acoustics, Academic Press, New York 223–310 (1984)

    Google Scholar 

  17. Y. Takahashi, M. Tohyama and Y. Yamasaki, “Phase responses of transfer functions and coherent field in a reverberation room (in Japanese with English abstract and figures),” Trans. on the Inst. of Elect. Inf. and Comm. Eng. J89-A(4) 291–297 2006

    Google Scholar 

  18. H. Kuttruff, Room Acoustics (3rd ed), Elserier Science, New York 114–120 (1991)

    Google Scholar 

  19. M. Tohyama and R. Lyon, “Phase variabilities and zeros in a reverberant transfer function,” J. Acoust. Soc. Am. 95(1) 286–323 (1994)

    Article  ADS  Google Scholar 

  20. M. Tohyama and R. Lyon, “gTransfer function phase and truncated impulse response,” J. Acoust. Soc. Am. 86(5) 2025–2029} (1989)

    Article  ADS  Google Scholar 

  21. L. Savioja, J. Huopaniemi, T. Lokki and R. Väänänen, “Creating interactive virtual acoustics environments,” J. Audio Eng. Soc. 47 675–705 (1999)

    Google Scholar 

  22. P. Zahorik, “Direct-to-reverberant energy ratio sensitivity,” J. Aoucst. Soc. Am. 112(5) 2110–2117 (2002)

    Article  ADS  Google Scholar 

  23. Y. Takahashi, M. Tohyama and Y. Yamasaki, “Rendering Spatial Reverberation and Perception of source Distance According to the Minimum-phase characteristics,” to be presented at 28th Int. Conf. AES (July 2006)

    Google Scholar 

  24. M. Tohyama, R. Lyon and T. Koike, “Pulse waveform recovery in a reverberant condition,” J. Acoust. Soc. Am. 91(5) 2805–2812} (1992)

    Article  ADS  Google Scholar 

  25. M. R. Schroeder, “A new method of measuring reverberation time,” J. Acoust. Soc. Am. 37 409–412 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tohyama, M. (2008). Room Transfer Function. In: Havelock, D., Kuwano, S., Vorländer, M. (eds) Handbook of Signal Processing in Acoustics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30441-0_75

Download citation

Publish with us

Policies and ethics