Skip to main content

A Geometric Cascade for the Spectral Approximation of the Navier-Stokes Equations

  • Chapter
  • First Online:
Probability and Partial Differential Equations in Modern Applied Mathematics

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 140))

  • 1712 Accesses

Abstract

We explain some ideas contained in some recent papers, concerning the statistical long time behaviour of the spectral approximation of the Navier-Stokes equations, driven by a highly degenerate white noise forcing. The analysis highlights that the ergodicity of the stochastic system is obtained by a geometric cascade. Such a cascade can be interpreted as the mathematical counterpart of th e energy cascade, a well-known phenomenon in turbulence.

In the second part of the paper, we analyse the results of some numerical simulations. Such simulations give a hint on the behaviour of the system in the case where the white noise forcing fails the assumptions of the main theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.A. AGRACHEV AND A.V. SARYCHEV, Navier-Stokes equation controlled by degenerate forcing: controllability in finite-dimensional projections, to appear on J. Math. Fluid Mech.

    Google Scholar 

  2. J.M. BISMUT, Martingales, the Malliavin calculus and hypo-ellipticity under general Hörmander’ s conditions, Z. Wahrsch. Verw. Gebiete 56 (1981), 469–505

    Article  MathSciNet  Google Scholar 

  3. S. CERRAI, Second Order PDE’s in Finite and Infinite Dimension, Lecture Notes in Math. 1762, Springer Verlag, 2001.

    Google Scholar 

  4. P. CONSTANTIN, C. FOlAS, AND R. TEMAM, On the large time Galerkin approximation of the Navier-Stokes equations, SIAM J. Numer. Anal. 21 (1984), no. 4, 615–634.

    Article  MathSciNet  Google Scholar 

  5. P. CONSTANTIN, Geometric statistics in turbulence, SIAM Review 36(I) (1994), 73–98.

    Article  MathSciNet  Google Scholar 

  6. G. DA PRATO AND A. DEBUSSCHE, Ergodicity for the 3D stochastic Navier-Stokes equations, preprint (2003).

    Google Scholar 

  7. G. DA PRATO AND J. ZABCZYK, Ergodicity for infinite-dimensional systems, London Mathematical Society Lecture Note Series, 229. Cambridge University Press, Cambridge, 1996.

    Book  Google Scholar 

  8. J.L. DOOB, Asymptotic properties of Markov transition probabilities, Trans. Amer. Math. Soc. 63 (1948), 393–421.

    MathSciNet  MATH  Google Scholar 

  9. J.P. ECKMANN AND M. HAIRER, Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise, Comm. Math. Phys. 219 (2001), no. 3, 523–565.

    Article  MathSciNet  Google Scholar 

  10. D.K. ELWORTHY AND X.M. LI, Formulae for the derivatives of heat semigroups, J. Func. Anal. 125 (1994), 252–286.

    Article  MathSciNet  Google Scholar 

  11. W. E AND J.C. MATTlNGLY, Ergodicity for the Navier-Stokes equation with degenerate random forcing: finite-dimensional approximation, Comm. Pure Appl. Math. 54 (2001), no. 11, 1386–1402.

    Article  MathSciNet  Google Scholar 

  12. F. FLANDOLI, Irreducibility of the 3-D stochastic Navier-Stokes equation, J. Funct. Anal. 149 (1997), no. 1, 160–177.

    Article  MathSciNet  Google Scholar 

  13. C. FOlAS, O. MANLEY, R. ROSX, AND R. TEMAM, Navier-Stokes equations and turbulence, Cambridge University Press, Cambridge, 2001.

    Google Scholar 

  14. G. GALLAVOTTI, Foundations of fluid dynamics, translated from the Italian. Texts and Monographs in Physics. Springer Verlag, Berlin, 2002.

    Google Scholar 

  15. M. HAIRER, Exponential mixing for a stochastic partial differential equation driven by degenerate noise, Nonlinearity 15 (2002), no. 2, 271–279.

    Article  MathSciNet  Google Scholar 

  16. R.Z. HAS’MINSKII, Ergodic properties of recurrent diffusion processes and stabilization of the solutions of the Cauchy problem for parabolic equations, Theory Probab. Appl. 5 (1960),179–196.

    Article  MathSciNet  Google Scholar 

  17. [17] D.J. HIGHAM, J.C. MATTINGLY, AND A. M. STUART, Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise, Stochastic Process. Appl. 101 (2002), no. 2, 185–232.

    Article  MathSciNet  Google Scholar 

  18. V. JURDJEVIC, Geometric control theory, Cambridge Studies in Advanced Mathematics 51, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  19. V. JURDJEVIC AND I. KUPKA, Polynomial control systems Math. Ann. 272 (1985), no. 3, 361–368.

    Article  MathSciNet  Google Scholar 

  20. P.E. KLOEDEN AND E. PLATEN, Numerical solution of stochastic differential equations, Applications of Mathematics 23, Springer Verlag, Berlin, 1992.

    MATH  Google Scholar 

  21. A.N. KOLMOGOROV, Local structure of turbulence in an incompressible fluid at a very high Reynolds number, Dokl. Akad. Nauk SSSR 30 (1941), 299–302; English transls., C.R. (Dokl.) Acad. ScL URSS 30 (1941), 301–305, and Proc. Ray. Soc. London Ser. A 434 (1991), 9–13.

    Google Scholar 

  22. L.D. LANDAU AND E.M. LIFSHITZ, Fluid mechanics, Course of Theoretical Physics, VoI. 6. Pergamon Press, London, Paris, Frankfurt, 1959.

    Google Scholar 

  23. J. LERAY, Etude de diverses équations intégrales non linéaires et de quelques problémes que pose l’hydrodynamique, J. Math. Pures Appl. 12 (1933), 1–82.

    MATH  Google Scholar 

  24. J. LERAY, Essei sur les mouvements plans d’un liquide visqueux que limitent des parois, J. Math. Pures Appl. 13 (1934), 331–418.

    MATH  Google Scholar 

  25. J. LERAY, Essai sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math. 63 (1934), 193–248.

    Article  MathSciNet  Google Scholar 

  26. P. MALLIAVIN Stochastic calculus of variation and hypoelliptic operators, Proceedings of the International Symposium on Stochastic Differential Equations (Res. Inst. Math. ScL, Kyoto Univ., Kyoto (1976), 195–263, WHey, New York Chichester Brisbane, 1978.

    Google Scholar 

  27. J.C. MATTINGLY, E. PARDOUX, Malliavin calculus and the randomly forced Navier-Stokes equations, preprint (2003).

    Google Scholar 

  28. J.C. MATTINGLY, On recent progress for the stochastic Navier-Stokes equations, to appear on Journées Équations aux dérivées partielles.

    Google Scholar 

  29. S.P. MEYN AND R.L. TWEEDlE, Markov chains and stochastic stability, Communications and Control Engineering Series. Springer-Verlag London, Ltd., London, 1993.

    Google Scholar 

  30. S.P. MEYN AND R.L. TWEEDlE, Stability of Markovian processes. Il. Continuoustime processes and sampled chains, Adv. in Appl. Probab. 25 (1993), no. 3, 487–517.

    Article  MathSciNet  Google Scholar 

  31. S.P. MEYN AND R.L. TWEEDlE, Stability of Markovian processes. IlI. Foster-Lyapunov criteria for continuous-time processes, Adv. in AppI. Probab. 25 (1993), no. 3, 518–548.

    Article  Google Scholar 

  32. J. NORRIS, Simplified Malliavin calculus, Séminaire de Probabilités, XX, 1984/85, 101–130, Lecture Notes in Math., 1204, Springer, Berlin, 1986.

    Google Scholar 

  33. M. ROMITO, Ergodicity of the finite dimensional approximation of the 3D Navier-Stokes equations forced by a degenerate noise, J. Stat. Phys. 114 (2004), Nos. 1/2, 155–177.

    Google Scholar 

  34. D.W. STROOCK, The Malliavin calculus, a functional analytic approach, J. Funct. Anal. 44 (1981), no. 2, 212–257.

    Article  MathSciNet  Google Scholar 

  35. D.W. STROOCK, Some applications of stochastic calculus to partial differential equations, Eleventh Saint Flour probability summer school—1981 (Saint Flour, 1981), 267-382, Lecture Notes in Math. 976, Springer, Berlin, 1983.

    Google Scholar 

  36. D.W. STROOCK AND S.R.S. VARADHAN, On the support of diffusion processes with applications to the strong maximum principle, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. Ill: Probability theory, pp. 333–359. Univ. California Press, Berkeley, Calif., 1972.

    Google Scholar 

  37. VV. AA., The GNU Scientific Library, http://www.gnu.org/software/gsl/.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Romito, M. (2005). A Geometric Cascade for the Spectral Approximation of the Navier-Stokes Equations. In: Waymire, E.C., Duan, J. (eds) Probability and Partial Differential Equations in Modern Applied Mathematics. The IMA Volumes in Mathematics and its Applications, vol 140. Springer, New York, NY. https://doi.org/10.1007/978-0-387-29371-4_13

Download citation

Publish with us

Policies and ethics