Skip to main content

Spin-Polarized Scanning Tunneling Microscopy

  • Chapter
Scanning Probe Microscopy

Abstract

We present an overview of spin-polarized scanning tunneling microscopy (Sp-STM). As in STM, the electron density near the sample surface can be imaged. In addition, Sp-STM allows us to map the spin polarization. Thus, information on the magnetic configuration of the sample surface can be gathered. Three imaging modes are currently being used: the constant-current mode, the spectroscopic mode, and the differential magnetic mode. The principles of the three modes are explained, and their advantages and limitations are discussed in the framework of imaging ferromagnetic and antiferromagnetic surfaces of bulk materials and thin film systems. Further, two approaches for controlling the spin direction of the tip apex, i.e., the sensitive spin component, are discussed. Surface or interface magnetic anisotropies at the tip apex may be used to align the axis of sensitivity or alternatively, the shape anisotropy of the whole tip may determine the spin direction. Finally, it is demonstrated that Sp-STM can be used beyond magnetic imaging. Valuable information on the spin resolved electronic structure or on the fundamental processes of spin-polarized tunneling may be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Tersoff and D. R. Hamann, Phys. Rev. Lett. 50, 1998 (1983).

    Article  CAS  Google Scholar 

  2. J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985).

    Article  CAS  Google Scholar 

  3. G. Binning, H. Rohrer, Ch. Gerber, and E. Weibel, Appl. Phys. Lett. 40, 178 (1982).

    Article  Google Scholar 

  4. G. Binning, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).

    Article  CAS  Google Scholar 

  5. N. Müller, W. Eckstein, W. Heiland, and W. Zinn, Phys. Rev. Lett. 29, 1651 (1972).

    Article  Google Scholar 

  6. M. Landolt and Y. Yafet, Phys. Rev. Lett. 40, 1401 (1978).

    Article  CAS  Google Scholar 

  7. M. Jullière, Phys. Lett. 54A, 225 (1975).

    Google Scholar 

  8. J. C. Slonczewski, Phys. Rev. B 39, 6995 (1989).

    Article  Google Scholar 

  9. T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995).

    CAS  Google Scholar 

  10. D. T. Pierce, Physica Scripta 38, 291 (1988).

    Article  CAS  Google Scholar 

  11. Y. Suzuki, W. Nabhan, and K. Tanaka, Appl. Phys. Lett. 71, 3153 (1997).

    Article  CAS  Google Scholar 

  12. S. F. Alvarado and P. Renaud, Phys. Rev. Lett. 68, 1387 (1992).

    Article  CAS  Google Scholar 

  13. S. Heinze, P. Kurz, D. Wortmann, G. Bihlmayer, and S. Blügel, Appl. Phys. A 75, 25 (2002).

    Article  CAS  Google Scholar 

  14. R. Wiesendanger, H. J. Güntherodt, G. Güntherodt, R.J. Gambino, and R. Ruf, Phys. Rev. Lett. 65, 247 (1990).

    Article  CAS  Google Scholar 

  15. S. Blügel, D. Pescia, and P.H. Dederichs, Phys. Rev. B 39, 1392 (1989).

    Article  Google Scholar 

  16. M. Kleiber, M. Bode, R. Ravlic, and R. Wiesendanger, Phys. Rev. Lett. 85, 4606 (2000).

    Article  CAS  Google Scholar 

  17. S. Heinze, M. Bode, A. Kubetzka, O. Pietzsch, X. Nie, S. Blügel, and R. Wiesendanger, Science 288, 1805 (2000).

    Article  CAS  Google Scholar 

  18. H. Yang, A. R. Smith, M. Prikhodko, and W.R.L. Lambrecht, Phys. Rev. Lett. 89, 226101 (2002).

    Article  CAS  Google Scholar 

  19. J. A. Stroscio, D. T. Pierce, A. Davies, R. J. Celotta, and M. Weinert, Phys. Rev. Lett. 75, 2960 (1995).

    Article  CAS  Google Scholar 

  20. M. Bode, M. Getzlaff, and R. Wiesendanger, Phys. Rev. Lett. 81, 4256 (1998).

    Article  CAS  Google Scholar 

  21. H. J. Elmers, J. Hauschild, and U. Gradmann, Phys. Rev. B 59 3688 (1998).

    Article  Google Scholar 

  22. O. Pietzsch, A. Kubetzka, M. Bode, and R. Wiesendanger, Phys. Rev. Lett. 84, 5212 (2000).

    Article  CAS  Google Scholar 

  23. B. Heinrich, A. S. Arrott, C. Liu, and S. T. Purcell, J. Vac. Sci. Technol. A 5, 1935 (1987).

    Article  CAS  Google Scholar 

  24. T.G. Walker and H. Hopster, Phys. Rev. B 48, 3563 (1993).

    Article  CAS  Google Scholar 

  25. T.K. Yamada, M.M.J. Bischoff, G. M. M. Heijnen, T. Mizoguchi, and H. van Kempen, Phys. Rev. Lett. 90, 056803 (2003).

    Article  CAS  Google Scholar 

  26. A. Kubetzka, M. Bode, O. Pietzsch, and R. Wiesendanger, Phys. Rev. Lett. 88, 057201 (2002).

    Article  CAS  Google Scholar 

  27. R. Ravlic, M. Bode, and R. Wiesendanger, Journ. Phys., Cond. Matter 15, 2513 (2003).

    Article  Google Scholar 

  28. A. Yamasaki, W. Wulfhekel, R. Hertel, S. Suga, and J. Kirschner, Phys. Rev. Lett. 91, 127201 (2003).

    Article  CAS  Google Scholar 

  29. M. Bode, O. Pietzsch, A. Kubetzka, and R. Wiesendanger, Phys. Rev. Lett. 92, 067201 (2004).

    Article  CAS  Google Scholar 

  30. O. Pietzsch, A. Kubetzka, M. Bode, and R. Wiesendanger, Phys. Rev. Lett. 92, 057202 (2004).

    Article  CAS  Google Scholar 

  31. M. Johnson and J. Clarke, J. Appl. Phys. 67, 6141 (1990).

    Article  Google Scholar 

  32. W. Wulfhekel and J. Kirschner, Appl. Phys. Lett. 75, 1944 (1999).

    Article  CAS  Google Scholar 

  33. J. Unguris, M. R. Scheinfein, R. C. Celotta, and D.T. Pierce, Appl. Phys. Lett. 55, 2553 (1989).

    Article  CAS  Google Scholar 

  34. H. F. Ding, W. Wulfhekel, C. Chen, J. Barthel, and J. Kirschner, Mater. Sci. and Engineering B 84, 96 (2001).

    Article  Google Scholar 

  35. H. F. Ding, W. Wulfhekel, and J. Kirschner, Europhys. Lett. 57, 100 (2002).

    Article  CAS  Google Scholar 

  36. U. Schlickum, W. Wulfhekel, and J. Kirschner, Appl. Phys. Lett. 83, 2016 (2003).

    Article  CAS  Google Scholar 

  37. S. Andrieu, E. Foy, H. Fischer, M. Alnot, F. Chevrier, G. Krill, and M. Piecuch, Phys. Rev. B 58 8210 (1998).

    Article  CAS  Google Scholar 

  38. A. Berger and H. Hopster, Phys. Rev. Lett. 73, 193 (1994).

    Article  CAS  Google Scholar 

  39. A. Berger A and E. E. Fullerton, J. Magn. Magn. Mater 165, 471 (1997).

    Article  CAS  Google Scholar 

  40. U. Schlickum, N. Janke-Gilman, W. Wulfhekel, and J. Kirschner, Phys. Rev. Lett. 92, 107203 (2004).

    Article  CAS  Google Scholar 

  41. M. Pajda, J. Kudrnovský, I. Turek, V. Drchal, and P. Bruno, Phys. Rev. B 64, 174402 (2001).

    Article  CAS  Google Scholar 

  42. W. Wulfhekel, H. F. Ding, G. Steierl, M. Vazquez, P. Marin, A. Hernando, and J. Kirschner, Appl. Phys. A 72, 463 (2001).

    Article  CAS  Google Scholar 

  43. M. Bode and R. Wiesendanger, In: Magnetic Microscopy of Nanostructures, ed. by H. Hopster, H.P. Oepen (Springer, Berlin Heidelberg New York, 2004), p. 205.

    Google Scholar 

  44. T.K. Yamada, M.M.J. Bischoff, T. Mizoguchi, and H. van Kempen, Appl. Phys. Lett. 82, 1437 (2003).

    Article  CAS  Google Scholar 

  45. W. Wulfhekel, R. Hertel, H. F. Ding, G. Steierl, and J. Kirschner, J. Magn. Magn. Mater. 249, 368 (2002).

    Article  CAS  Google Scholar 

  46. H. Boeve, E. Girgis, J. Schelten, J. De Boeck, and G. Borghs, Appl. Phys. Lett. 76, 1048 (2000).

    Article  CAS  Google Scholar 

  47. J. Zhang and R. White, J. Appl. Phys. 83, 6512 (1998).

    Article  CAS  Google Scholar 

  48. J. S. Moodera, J. Nowak, and R. J. M. van de Veerdonk, Phys. Rev. Lett. 80, 2941 (1998).

    Article  CAS  Google Scholar 

  49. J. M. MacLaren, X.-G. Zhang, W. H. Butler, and X. Wang, Phys. Rev. B 59, 5470 (1999).

    Article  CAS  Google Scholar 

  50. H. F. Ding, W. Wulfhekel, J. Henk, P. Bruno, and J. Kirschner, Phys. Rev. Lett. 90, 116603 (2003).

    Article  CAS  Google Scholar 

  51. C. Math, J. Braun, and M. Donath, Surf. Sci. 482–485, 556 (2001).

    Article  Google Scholar 

  52. R. Wu, and A. J. Freeman, J. Magn. Magn. Mater. 200, 498 (1999).

    Article  CAS  Google Scholar 

  53. A. Lessard, T. H. Moos, and W. Hübner, Phys. Rev. B 56, 2594 (1997).

    Article  CAS  Google Scholar 

  54. M. Bode, S. Heinze, A. Kubetzka, O. Pietsch, X. Nie, G. Bihlmayer, S. Blügel, and R. Wiesendanger, Phys. Rev. Lett. 89, 237205 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wulfhekel, W., Schlickum, U., Kirschner, J. (2007). Spin-Polarized Scanning Tunneling Microscopy. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-28668-6_13

Download citation

Publish with us

Policies and ethics