Skip to main content

Anodization: A Promising Nano-Modification Technique of Titanium-based Implants for Orthopedic Applications

  • Chapter
Surface Engineered Surgical Tools and Medical Devices

As one of the valve metals (including Ti, Al, Ta, Nb, V, Hf, W), titanium is protected by a thin titanium oxide layer which spontaneously forms on its surface when exposed to air or other oxygen containing environments. This oxide passive layer is typically 2 to 5 nm thick and is responsible for the well-documented corrosion resistance property of titanium and its alloys. Because of this and their excellent mechanical properties, titanium and its alloys are widely used in orthopedic and dental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, in Titanium in medicine, Springer, p. 171 (2001)

    Google Scholar 

  2. J. F. Shackelford, vol. 1 Bioceramics, Netherlands: Gordon and Breach Science Publishers, p. 17 (1999)

    Google Scholar 

  3. C. G. Moran, T. C. Horton, BMJ, 320, p. 820 (2000)

    Article  Google Scholar 

  4. D. M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, in Titanium in medicine, Springer, p. 232 (2001)

    Google Scholar 

  5. C. Larsson, P. Thomsen, B. O. Aronsson, M. Rodahl, J. Lausmaa, B. Kasemo and L. E. Ericson, Biomaterials 17, p. 605 (1996)

    Article  Google Scholar 

  6. H. M. Kim, F. Miyaji, .T. Kokubo, T. Nakamura, J. Mater. Sci.: Mater. Med. 8, p. 341 (1997)

    Article  Google Scholar 

  7. T. Kokubo, H. M. Kim, M. Kawashita, and T. Nakamura, J. Mater. Sci.: Mater. Med. 15, p. 899 (2004)

    Google Scholar 

  8. C. Sittig, M. Textor, N. D. Spencer, M. Wieland, and P. H. Vallotton, J. Mater. Sci.: Mater. Med. 10, p. 35 (1999)

    Article  Google Scholar 

  9. K. Bordji, J. Y. Jouzeau, D. Mainard, E. Payan, P. Netter, K. T. Rie, T. Stucky and M. Hage-Ali, Biomaterials 17, p. 929 (1996)

    Article  Google Scholar 

  10. R. Furlong, J. F. Osborn, J. Bone Joint Surg. 73B, p. 741 (2001)

    Google Scholar 

  11. S.-S. Kim, M. S. Park, O. Jeon, C. Y. Choi and B.-S. Kim, Biomaterials, In Press

    Google Scholar 

  12. K. C. Baker, M. A. Anderson, S. A. Oehlke, A. I. Astashkina, D. C. Haikio, J. Drelich and S. W. Donahue Growth, Materials Science and Engineering: C, In Press

    Google Scholar 

  13. M. Sato, E. B. Slamovich and T. J. Webster, Biomaterials 26, p. 349 (2005)

    Article  Google Scholar 

  14. J. D. Bronzino, Biomedical Engineering Handbook. CRC Press, p. 274 (1995)

    Google Scholar 

  15. T. J. Webster, J. U. Ejiofor, Biomaterials 25, p. 4731 (2004)

    Article  Google Scholar 

  16. Y. T. Sul, C. B. Johansson, Y. Jeong, T. Albrektsson, Medical Engineering & Physics 23, p. 329 (2001)

    Article  Google Scholar 

  17. J. Choi, R. B. wehrspohn, J. Lee, U. Gosele, Electrochimica Acta 49, p. 2645 (2004)

    Article  Google Scholar 

  18. R. Chiesa, E. Sandrini, M. Santin, G. Rondelli, A. Cigada, J. Applied Biomaterials & Biomechanics 1, p. 91 (2003)

    Google Scholar 

  19. O. Zinger, P. F. Chauvy, D. Landolt, J. of the electrochemical society 150, p. 495 (2003)

    Article  Google Scholar 

  20. B. Yang, M. Uchida, H.-M. Kim, X. Zhang and T. Kokubo, Biomaterials 25, p. 1003 (2004)

    Article  Google Scholar 

  21. C. Larsson, P. Thomsen, B.-O. Aronsson, M. Rodahl, J. Lausmaa, B. Kasemo and L. E. Ericson, Biomaterials 17, p. 605 (1996)

    Article  Google Scholar 

  22. X. Zhu, J. Chen, L. Scheideler, R. Reichl and J. Geis-Gerstorfer, Biomaterials rials 25, p. 4087 (2004)

    Article  Google Scholar 

  23. H.-H. Huang, S.-J. Pan, Y.-L. Lai, T.-H. Lee, C.-C. Chen and F.-H. Lu, Scripta Materialia 51, p. 1017 (2004)

    Article  Google Scholar 

  24. L. H Li, Y. M Kong, H. W Kim, Y. W Kim, H. E Kim, S. J Heo and J. Y Koak, Biomaterials 25, p. 2867 (2004)

    Article  Google Scholar 

  25. J. Y Suh, B. C Jang, X. Zhu, J. L. Ong, and K. Kim, Biomaterials 24, p. 347 (2003)

    Article  Google Scholar 

  26. W. W. Son, X. Zhu, H. I. Shin, J. L. Ong, K. H. Kim, J. Biomed. Mater. Res. Part B Appl. Biomater. 66B, p. 520 (2003)

    Article  Google Scholar 

  27. M. Fini, A. Cigada, G. Rondelli, R. Chiesa, R. Giardino, G. Giavaresi, N. N Aldini, P. Torricelli, B. Vicentini, Biomaterials 20, p. 1587 (1999)

    Article  Google Scholar 

  28. W.L. Baun, Surf. Technol. 11, p. 421 (1980)

    Article  Google Scholar 

  29. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, M. Aucouturier, Surf. Interface Anal. 27, p. 629 (1999)

    Article  Google Scholar 

  30. D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, J. Mater. Res. 16, p. 3331 (2001)

    Article  Google Scholar 

  31. G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee and C. A. Grimesa, J. Mater. Res. 18, p. 2588 (2003)

    Article  Google Scholar 

  32. R. Beranek, H. Hildebrand, and P. Schmuki, Electrochemical and solid-state letters 6, p. B12 (2003)

    Article  Google Scholar 

  33. H. Tsuchiya, J. M. Macak, L. Taveira, E. Balaur, A. Ghicov, K. Sirotna, P. Schmuki, Electrochemistry communications 7, p. 576 (2005)

    Article  Google Scholar 

  34. Q. Cai, M. Paulose, O. K. Varghese and C. A. Grimes, J. Mater. Res. 20, p. 230 (2005)

    Article  Google Scholar 

  35. C. Ruan, M. Paulose, O. K. Varghese, G. K. Mor, and C. A. Grimes, J. Phys. Chen. B 109, p. 15754 (2005)

    Article  Google Scholar 

  36. J. M. Macak, H. Tsuchiya, P. Schmuki, Angew. Chem. Int. Ed. 44, p. 2100 (2005)

    Article  Google Scholar 

  37. Ghicov, H. Tsuchiya, J. M. Macak, P. Schmuki, Electrochemistry communications 7, p. 505 (2005)

    Article  Google Scholar 

  38. K. S. Raja, M. Misra, K. Paramguru, Electrochimica Acta 51, p. 154 (2005)

    Article  Google Scholar 

  39. P. Kurze, W. Krysmann, H. G. Schneider, Cryst. Res. Technol. 21, p. 1603 (1986)

    Article  Google Scholar 

  40. H. Ishizawa, M. Ogino, J. Biomed. Mater. Res. 29, p. 1071 (1995)

    Google Scholar 

  41. S.-H. Oh, R. R. Finõnes, C. Daraio, L.-H. Chen and S. Jin, Biomaterials 26, p. 4938 (2005)

    Article  Google Scholar 

  42. J. L. Delplancke, R. Winand, Electrochim Acta 33, p. 1539 (1973)

    Article  Google Scholar 

  43. J. P. Schreckenback, G. Marx, F. Schlottig, M. Textor, N. D. Spencer, Journal of Surface Science, Materials in Medicine 10, p. 453 (1999)

    Article  Google Scholar 

  44. H. Ishizawa, M. Ogino, J. Biomed. Mater. Res. 29, p. 65 (1995)

    Google Scholar 

  45. Y. P Lu, R. F. Zhu, S. T. Li, Y. J. Song, M. S. Li, T. Q. Lei, Materials Science and Technology 19, p. 260 (2003)

    Article  Google Scholar 

  46. Y. Yang, J. L. Ong, J. Biomed. Mater. Res. A 64, p. 509 (2003)

    Article  Google Scholar 

  47. Y. C. Yang, E. Chang, S. Y. Lee, J. Biomed. Mater. Res. A 67, p. 886 (2003)

    Article  Google Scholar 

  48. R. Rodriguez, K. Kim, J. L. Ong, J. Biomed. Mater. Res. A 65, p. 352 (2003)

    Article  Google Scholar 

  49. K. Anselme, Biomaterials 21, p. 667 (2000)

    Article  Google Scholar 

  50. E. G. Hayman, M. D Pierschbacher, S. Suzuki, E. Ruoslahti, Exp. Cell Res. 160, p. 245 (1985)

    Article  Google Scholar 

  51. H. Thomas, C. D. McFarland, M. L. Jenkins, A. Rezania, J. C. Steel, K. E. Healy, J. Biomed. Mater. Res. 37, p. 81 (1997)

    Google Scholar 

  52. P. Henry, A. E. Tan, B. P. Allan, APPL Osseointegration Res. 1, p. 15 (2000)

    Google Scholar 

  53. Y. T. Sul, C. B. Johansson, Y. Jeong, A. Wennerberg, T. Albrektsson, Clin. Oral Implants Res. 13, p. 252 (2002)

    Article  Google Scholar 

  54. Y. T. Sul, C. B. Johansson, K. Roser, T. Albrektsson, Biomaterials 23, p. 1809 (2002)

    Article  Google Scholar 

  55. H. Ishizawa, M. Fugino, M. Ogino, J. Biomed. Mater. Res. 29, p. 1459 (1995)

    Google Scholar 

  56. G. Giavaresi, M. Fini, A. Cigada, Biomaterials 24, p. 1583 (2003)

    Article  Google Scholar 

  57. G. Giavaresi, M. Fini, A. Cigada, R. Chiesa, G. Rondelli, L. Rimondini, N. Nicoli Aldini, L. Martini, R. Giardino, J. Biomed. Mater. Res. A 67, p. 112 (2003)

    Article  Google Scholar 

  58. W. W. Son, X. Zhu, H. I. Shin, J. L. Ong, K. H. Kim, J. Biomed. Mater. Res. B Appl. Biomater. 66B, p. 520 (2003)

    Article  Google Scholar 

  59. H. Ishizawa, M. Fujino, and M. Ogino, J. Biomed. Mater. Res. 35, p. 199 (1997)

    Article  Google Scholar 

  60. Y. T. Sul, Biomaterials 24, p. 3893 (2003)

    Article  Google Scholar 

  61. Feng, J. Wang, B. C. Yang, S. X. Qu, X. D. Zhang, Biomaterials 24, p. 4664 (2003)

    Article  Google Scholar 

  62. D. Boyan, R. Batzer, K. Kiesewetter, Y. Lie, D. L. Cochran, S. SzmucklerMoncler, D. D. Dean, Z. Schwartz, J. Biomed. Mater. Res. 39, p. 77 (1998)

    Google Scholar 

  63. M. Karlsson, E. Palsgard, P. R. Wilshaw, L. D. Silvio, Biomaterials 24, p. 3039 (2003)

    Article  Google Scholar 

  64. T. J. Webster, C. Ergun, R. H. Doremus, R. W. Siegel and R. Bizios, Biomaterials 22, p. 1327 (2001)

    Article  Google Scholar 

  65. D. S. Dunn, S. Raghaven, R. G. Volz, J. Appl. Biomater. 5, p. 325 (1994)

    Article  Google Scholar 

  66. M. Varkey, S. A. Gittens, H. Uludag, Expert Opin. Drug Deliv. 1, p. 19 (2004)

    Article  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Anodization: A Promising Nano-Modification Technique of Titanium-based Implants for Orthopedic Applications. In: Jackson, M.J., Ahmed, W. (eds) Surface Engineered Surgical Tools and Medical Devices. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-27028-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-27028-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-27026-5

  • Online ISBN: 978-0-387-27028-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics