Skip to main content

Part of the book series: Problem Books in Mathematics ((1605,volume 1))

  • 2920 Accesses

Abstract

We will denote by d(n) the number of positive divisors of n, by σ(n) the sum of those divisors, and by σk(n) the sum of their kth powers, so that σ 0(n) = d(n) and σ l(n) = σ(n). We use s(n) for the sum of the aliquot parts of n, i.e., the positive divisors of n other than n itself, so that s(n) = σ(n) - n. The number of distinct prime factors of n will be denoted by ω(n) and the total number, counting repetitions, by Ω(n).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Jennifer T. Betcher and John H. Jaroma, An extension of the results of Servais and Cramer on odd perfect and odd multiply perfect numbers, Amer. Math. Monthly, 110(2003) 49–52; MR 2003k: 11006.

    Google Scholar 

  2. Michael S. Brandstein, New lower bound for a factor of an odd perfect number, #82T-10–240, Abstracts Amer. Math. Soc., 3 (1982) 257.

    Google Scholar 

  3. Richard P. Brent and Graeme L. Cohen, A new lower bound for odd perfect numbers, Math. Comput., 53 (1989) 431–437.

    MATH  Google Scholar 

  4. R. P. Brent, G. L. Cohen and H. J. J. te Riele, Improved techniques for lower bounds for odd perfect numbers, Math. Comput., 57(1991) 857–868; MR 92c: 1 1004.

    Google Scholar 

  5. E. Chein, An odd perfect number has at least 8 prime factors, PhD thesis, Penn. State Univ., 1979.

    Google Scholar 

  6. Chen Yi-Ze and Chen Xiao-Song, A condition for an odd perfect number to have at least 6 prime factors - 1 mod 3, Hunan Jiaoyu Xueyuan Xuebao (Ziran Kexue), 12(1994) 1–6; MR 96e: 1 1007.

    Google Scholar 

  7. Graeme L. Cohen, On the largest component of an odd perfect number, J. Austral. Math. Soc. Ser. A, 42(1987) 280–286.

    Google Scholar 

  8. Roger Cook, Factors of odd perfect numbers, Number Theory (Halifax NS, 1994) 123–131, CMS Conf. Proc., 15 Amer. Math. Soc., 1995; MR 96f: 1 1009.

    Google Scholar 

  9. Roger Cook, Bounds for odd perfect numbers, Number Theory (Ottawa ON, 1996) 67–71, CRM Proc. Lecture Notes, 19 Amer. Math. Soc., 1999; MR 2000d: 11010.

    Google Scholar 

  10. Simon Davis, A rationality condition for the existence of odd perfect numbers, Int. J. Math. Math. Sci, 2003 1261–1293; MR 2004b:11007.

    Google Scholar 

  11. John A. Ewell, On necessary conditions for the existence of odd perfect numbers, Rocky Mountain J. Math., 29 (1999) 165–175.

    MathSciNet  MATH  Google Scholar 

  12. Aleksander Grytczuk and Marek W6jtowicz, There are no small odd perfect numbers, C.R. Acad. Sci. Paris Sér. I Math.328(1999) 1101–1105.

    Google Scholar 

  13. P. Hagis, Sketch of a proof that an odd perfect number relatively prime to 3 has at least eleven prime factors, Math. Comput.40(1983) 399–404.

    Google Scholar 

  14. P. Hagis, On the second largest prime divisor of an odd perfect number, Lecture Notes in Math., 899, Springer-Verlag, New York, 1971, pp. 254–263.

    Google Scholar 

  15. Peter Hagis and Graeme L. Cohen, Every odd perfect number has a prime factor which exceeds 106, Math. Comput, 67(1998) 1323–1330; MR 98k: 1 1002.

    Google Scholar 

  16. Judy A. Holdener, A theorem of Touchard on odd perfect numbers, Amer. Math. Monthly, 109(2002) 661–663; MR 2003d: 11012.

    Google Scholar 

  17. Douglas E. Iannucci, The second largest prime divisor of an odd perfect num-ber exceeds ten thousand, Math. Comput., 68(1999) 1749–1760; MR 2000i: 11200.

    Google Scholar 

  18. Douglas E. Iannucci, The third largest prime divisor of an odd perfect number exceeds one hundred, Math. Comput.69(2000) 867–879; MR 2000i:11201.

    Google Scholar 

  19. D. E. Iannucci and R. M. Sorli, On the total number of prime factors of an odd perfect number, Math. Comput.72(2003) 2077–2084; MR 2004b:11008.

    Google Scholar 

  20. Abd El-Hamid M. Ibrahim, On the search for perfect numbers, Bull. Fac.Sci. Alexandria Uuiv., 37 (1997) 93–95;

    Google Scholar 

  21. J. Inst. Math. Comput. Sci. Comput.Sci. Ser.,10(1999) 55–57.

    Google Scholar 

  22. Paul M. Jenkins, Odd perfect numbers have a prime factor exceeding 10 7 Math. Comput., 72(2003) 1549–1554; MR 2004a:11002.

    Google Scholar 

  23. Masao Kishore, Odd perfect numbers not divisible by 3 are divisible by at least ten distinct primes, Math. Comput., 31(1977) 274–279; MR 55 #2727.

    Google Scholar 

  24. Masao Kishore, Odd perfect numbers not divisible by 3. II, Math. Comput., 40(1983) 405–411; MR 84d:10009.

    Google Scholar 

  25. Masao Kishore, On odd perfect, quasiperfect, and odd almost perfect numbers, Math. Comput., 36(1981) 583–586; MR 82h:10006.

    Google Scholar 

  26. Pace P. Nielsen, An upper bound for odd perfect numbers, Elect. J. Combin. Number Theory,3(2003) A14. http://www.integers-ejcnt.org/vol3.html

    Google Scholar 

  27. J. Touchard, On prime numbers and perfect numbers, Scripta Math., 19(1953) 35–39; MR 14, 1063b.

    Google Scholar 

  28. M. D. Sayers, An improved lower bound for the total number of prime factors of an odd perfect number, M.App.Sc. Thesis, NSW Inst. Tech., 1986.

    Google Scholar 

  29. Paulo Starni, On the Euler’s factor of an odd perfect number, J. Number Theory, 37(1991) 366–369; MR 92a: 1 1010.

    Google Scholar 

  30. Paolo Starni, Odd perfect numbers: a divisor related to the Euler’s factor, J. Number Theory 44(1993) 58–59; MR 94c: 1 1003.

    Google Scholar 

  31. H. Abbott, C. E. Aull, Ezra Brown and D. Suryanarayana, Quasiperfect numbers, Acta Arith.,22(1973) 439–447; MR 47 #4915; corrections, 29(1976) 427428.

    Google Scholar 

  32. Leon Alaoglu and Paul Erdös, On highly composite and similar numbers, Trans. Amer. Math. Soc., 56(1944) 448–469; MR 6, 117b.

    Google Scholar 

  33. L. B. Alexander, Odd triperfect numbers are bounded below by 1060, M.A. thesis, East Carolina University, 1984.

    Google Scholar 

  34. M. M. Artuhov, On the problem of odd h-fold perfect numbers, Acta Arith., 23 (1973) 249–255.

    MathSciNet  MATH  Google Scholar 

  35. Michael R. Avidon, On the distribution of primitive abundant numbers, Acta Arith.,77(1996) 195–205; MR 97g:11100.

    Google Scholar 

  36. Paul T. Bateman, Paul Erdös, Carl Pomerance and E.G. Straus, The arithmetic mean of the divisors of an integer, in Analytic Number Theory (Philadelphia, 1980) 197–220, Lecture Notes in Math.,899, Springer, Berlin - New York, 1981; MR 84b:10066.

    Google Scholar 

  37. Walter E. Beck and Rudolph M. Najar, A lower bound for odd triperfects, Math. Comput., 38 (1982) 249–251.

    MathSciNet  MATH  Google Scholar 

  38. S. J. Benkoski, Problem E2308, Amer. Math. Monthly, 79 (1972) 774.

    MathSciNet  Google Scholar 

  39. S. J. Benkoski and P. Erdös, On weird and pseudoperfect numbers, Math. Comput., 28(1974) 617–623; MR 50 #228; corrigendum, S. Kravitz, 29 (1975) 673.

    Google Scholar 

  40. Alan L. Brown, Multiperfect numbers, Scripta Math., 20(1954) 103–106; MR 16, 12.

    Google Scholar 

  41. E. A. Bugulov, On the question of the existence of odd multiperfect numbers (Russian), Kabardino-Balkarsk. Gos. Univ. Ucen. Zap., 30 (1966) 9–19.

    MathSciNet  Google Scholar 

  42. David Callan, Solution to Problem 6616, Amer. Math. Monthly, 99 (1992) 783–789.

    Google Scholar 

  43. R. D. Carmichael and T. E. Mason, Note on multiply perfect numbers, including a table of 204 new ones and the 47 others previously published, Proc. Indiana Acad. Sci., 1911 257–270.

    Google Scholar 

  44. Paolo Cattaneo, Sui numeri quasiperfetti, Boll. Un. Mat. Ital.(3), 6(1951) 59–62; Zbl. 42, 268.

    Google Scholar 

  45. Cheng Lin-Feng, A result on multiply perfect number, J. Southeast Univ. (English Ed.), 18 (2002) 265–269.

    MathSciNet  Google Scholar 

  46. Graeme L. Cohen, On odd perfect numbers II, multiperfect numbers and quasiperfect numbers, J. Austral. Math. Soc. Ser. A, 29(1980) 369–384; MR 81m: 10009.

    Google Scholar 

  47. Graeme L. Cohen, The non-existence of quasiperfect numbers of certain forms, Fibonacci Quart., 20 (1982) 81–84.

    MathSciNet  MATH  Google Scholar 

  48. Graeme L. Cohen, On primitive abundant numbers, J. Austral. Math. Soc. Ser. A, 34(1983) 123–137.

    Google Scholar 

  49. Graeme L. Cohen, Primitive a-abundant numbers, Math. Comput., 43(1984) 263–270.

    Google Scholar 

  50. Graeme L. Cohen, Stephen Gretton and his multiperfect numbers, Internal Report No. 28, School of Math. Sciences, Univ. of Technology, Sydney, Australia, Oct 1991.

    Google Scholar 

  51. G. L. Cohen, Numbers whose positive divisors have small integral harmonic mean, Math. Comput., 66(1997) 883–891; MR 97f:11007.

    Google Scholar 

  52. G. L. Cohen and Deng Moujie, On a generalisation of Ore’s harmonic numbers, Nieuw Arch. Wisk.(4), 16(1998) 161–172; MR 2000k:11008.

    Google Scholar 

  53. G. L. Cohen and H. J. J. te Riele, Iterating the sum-of-divisors function, Experiment Math., 5(1996) 91–100; errata, 6(1997) 177; MR 97m:11007.

    Google Scholar 

  54. Graeme L. Cohen and Ronald M. Sorli, Harmonic seeds, Fibonacci Quart., 36(1998) 386–390; errata, 39(2001) 4; MR 99j:11002.

    Google Scholar 

  55. G. L. Cohen and P. Hagis, Results concerning odd multiperfect numbers, Bull. Malaysian Math. Soc., 8(1985) 23–26.

    Google Scholar 

  56. G. L. Cohen and M. D. Hendy, On odd multiperfect numbers, Math. Chronicle, 9(1980) 120–136; 10(1981) 57–61.

    Google Scholar 

  57. Philip L. Crews, Donald B. Johnson and Charles R. Wall, Density bounds for the sum of divisors function, Math. Comput.,26(1972) 773–777; MR 48 #6042; Errata 31(1977) 616; MR 55 #286.

    Google Scholar 

  58. J. T. Cross, A note on almost perfect numbers, Math. Mag.,47(1974) 230231.

    Google Scholar 

  59. Jean-Marie De Koninck and Aleksandar Ivié, On a sum of divisors problem, Publ. Inst. Math. (Beograd)(N.S.) 64(78)(1998) 9–20; MR 99m:11103.

    Google Scholar 

  60. Jean-Marie De Koninck and Imre Kdtai, On the frequency of k-deficient numbers, Publ. Math. Debrecen, 61(2002) 595–602; MR 2004a:11098.

    Google Scholar 

  61. Marc Deléglise, Encadrement de la densité des nombres abondants, (submitted).

    Google Scholar 

  62. P. Erdös, On the density of the abundant numbers, J. London Math. Soc., 9(1934) 278–282.

    Google Scholar 

  63. P. Erdös, Problems in number theory and combinatorics, Congressus Numerantium XVIII, Proc. 6th Conf. Numerical Math. Manitoba, 1976, 35–58 (esp. pp. 53–54); MR 80e: 10005.

    Google Scholar 

  64. Eswarathasan and E. Levine, p-integral harmonic sums, Discrete Math., 91(1991), 249–259; MR 93b:11039.

    Google Scholar 

  65. Benito Franqui and Mariano Garcia, Some new multiply perfect numbers, Amer. Math. Monthly, 60(1953) 459–462; MR 15, 101.

    Google Scholar 

  66. Benito Franqui and Mariano Garcia, 57 new multiply perfect numbers, Scripta Math., 20(1954) 169–171 (1955); MR 16, 447.

    Google Scholar 

  67. Mariano Garcia, A generalization of multiply perfect numbers, Scripte Math., 19(1953) 209–210; MR 15, 199.

    Google Scholar 

  68. Mariano Garcia, On numbers with integral harmonic mean, Amer. Math. Monthly, 61 (1954) 89–96; MR 15, 506d, 1140.

    Google Scholar 

  69. T. Goto and S. Shibata, All numbers whose positive divisors have integral harmonic mean up to 300, Math. Comput., 73(2004) 475–491.

    Google Scholar 

  70. Peter Hagis, The third largest prime factor of an odd multiperfect number exceeds 100, Bull. Malaysian Math. Soc., 9(1986) 43–49.

    Google Scholar 

  71. Peter Hagis, A new proof that every odd triperfect number has at least twelve prime factors, A tribute to Emil Grosswald: number theory and related analysis, 445–450 Contemp. Math., 143 Amer. Math. Soc., 1993. 43–49; MR 93e: 1 1003.

    Google Scholar 

  72. Peter Hagis and Graeme L. Cohen, Some results concerning quasiperfect numbers, J. Austral. Math. Soc. Ser. A, 33(1982) 275–286.

    Google Scholar 

  73. B. E. Hardy and M. V. Subbarao, On hyperperfect numbers, Proc. 13th Manitoba Conf. Numer. Math. Comput., Congressus Numerantium,42(1984) 183–198; MR 86c:11006.

    Google Scholar 

  74. Miriam Hausman and Harold N. Shapiro, On practical numbers, Comm. Pure Appl. Math.37(1984) 705–713; MR 86a:11036.

    Google Scholar 

  75. B. Hornfeck and E. Wirsing, Uber die Häufigkeit vollkommener Zahlen, Math. Ann., 133(1957) 431–438; MR 19, 837; see also 137(1959) 316–318; MR 21 #3389.

    Google Scholar 

  76. Aleksandar Ivie, The distribution of primitive abundant numbers, Studia Sci. Math. Hungar., 20(1985) 183–187; MR 88h:11065.

    Google Scholar 

  77. R. P. Jerrard and Nicholas Temperley, Almost perfect numbers, Math. Mag.,46 (1973) 84–87.

    Google Scholar 

  78. H.-J. Kanold, Uber mehrfach vollkommene Zahlen, J. reine angew. Math.,194(1955) 218–220; II 197(1957) 82–96; MR 17, 238; 18, 873.

    Google Scholar 

  79. H.-J. Kanold, Uber das harmonische Mittel der Teiler einer natürlichen Zahl, Math. Ann., 133(1957) 371–374; MR 19 635f.

    Google Scholar 

  80. H.-J. Kanold, Einige Bemerkungen über vollkommene und mehrfach vollkommene Zahlen, Abh. Braunschweig. Wiss. Ges., 42(1990/91) 49–55; MR 93c: 1 1002.

    Google Scholar 

  81. David G. Kendall, The scale of perfection, J. Appl. Probability, 19A(1982) 125–138; MR 83d:10007.

    Google Scholar 

  82. Masao Kishore, Odd triperfect numbers, Math. Comput., 42(1984) 231–233; MR 85d:11009.

    Google Scholar 

  83. Masao Kishore, Odd triperfect numbers are divisible by eleven distinct prime factors, Math. Comput. 44(1985) 261–263; MR 86k:11007.

    Google Scholar 

  84. Masao Kishore, Odd triperfect numbers are divisible by twelve distinct prime factors, J. Autral. Math. Soc. Ser. A, 42(1987) 173–182; MR 88c:11009.

    Google Scholar 

  85. Masao Kishore, Odd integers N with 5 distinct prime factors for which 2–10–12 a(N)/N 2 + 10–12, Math. Comput., 32 (1978) 303–309.

    MATH  Google Scholar 

  86. M. S. Klamkin, Problem E1445*, Amer. Math. Monthly, 67(1960) 1028; see also 82 (1975) 73.

    Google Scholar 

  87. Sidney Kravitz, A search for large weird numbers, J. Recreational Math., 9(1976–77) 82–85.

    Google Scholar 

  88. Richard Laatsch, Measuring the abundancy of integers, Math. Mag., 59 (1986) 84–92.

    MathSciNet  MATH  Google Scholar 

  89. G. Lord, Even perfect and superperfect numbers, Elem. Math.,30(1975) 8788; MR 51 #10213.

    Google Scholar 

  90. Makowski, Remarques sur les fonctions 0(n), ¢(n) et u(n), Mathesis, 69(1960) 302–303.

    Google Scholar 

  91. Makowski, Some equations involving the sum of divisors, Elem. Math., 34(1979) 82; MR 81b:10004.

    Google Scholar 

  92. Wayne L. McDaniel, On odd multiply perfect numbers, Boll. Un. Mat. Ital. (4), 3(1970) 185–190; MR 41 #6764.

    Google Scholar 

  93. Guiseppe Melfi, On 5-tuples of twin practical numbers, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat.(8), 2(1999) 723–734; MR 2000j:11138.

    Google Scholar 

  94. W. H. Mills, On a conjecture of Ore, Proc. Number Theory Conf., Boulder CO, 1972, 142–146.

    Google Scholar 

  95. D. Minoli, Issues in non-linear hyperperfect numbers, Math. Comput., 34 (1980) 639–645; MR 82c:10005.

    Google Scholar 

  96. Daniel Minoli and Robert Bear, Hyperperfect numbers, Pi Mu Epsilon J., 6#3(1974–75) 153–157.

    Google Scholar 

  97. Shigeru Nakamura, On k-perfect numbers (Japanese), J. Tokyo Univ. Merc. Marine(Nat. Sci.), 33(1982) 43–50.

    Google Scholar 

  98. Shigeru Nakamura, On some properties of o - (n), J. Tokyo Univ. Merc. Marine(Nat. Sci.), 35(1984) 85–93.

    Google Scholar 

  99. John C. M. Nash, Hyperperfect numbers. Period. Math. Hungar., 45 (2002) 121–122.

    MathSciNet  MATH  Google Scholar 

  100. Oystein Ore, On the averages of the divisors of a number, Amer. Math. Monthly, 55(1948) 615–619; MR 10 284a.

    Google Scholar 

  101. Seppo Pajunen, On primitive weird numbers, A collection of manuscriptsrelated to the Fibonacci sequence,18th anniv vol., Fibonacci Assoc., 162–166.

    Google Scholar 

  102. Carl Pomerance, On a problem of Ore: Harmonic numbers (unpublished typescript); see Abstract *709-A5, Notices Amer. Math. Soc.,20(1973) A-648.

    Google Scholar 

  103. Carl Pomerance, On multiply perfect numbers with a special property, Pacific J. Math., 57 (1975) 511–517.

    MATH  Google Scholar 

  104. Carl Pomerance, On the congruences a(n) = a mod n and n - a mod 0(n), Acta Arith., 26(1975) 265–272.

    Google Scholar 

  105. Paul Poulet, La Chasse aux Nombres, Fascicule I, Bruxelles, 1929, 9–27.

    MATH  Google Scholar 

  106. Herwig Reidlinger, Über ungerade mehrfach vollkommene Zahlen [On odd multiperfect numbers], Osterreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 192(1983) 237–266; MR 86d: 1 1018.

    Google Scholar 

  107. Herman J. J. te Riele, Hyperperfect numbers with three different prime factors, Math. Comput., 36 (1981) 297–298.

    MATH  Google Scholar 

  108. Richard F. Ryan, A simpler dense proof regarding the abundancy index, Math. Mag., 76 (2003) 299–301.

    MathSciNet  MATH  Google Scholar 

  109. J6zsef Sândor, On a method of Galambos and Kâtai concerning the frequency

    Google Scholar 

  110. of deficient numbers, Publ. Math. Debrecen,39(1991) 155–157; MR 92j:11111.

    Google Scholar 

  111. M. Satyanarayana, Bounds of a(N), Math. Student, 28 (1960) 79–81.

    MathSciNet  MATH  Google Scholar 

  112. H. N. Shapiro, Note on a theorem of Dickson, Bull. Amer. Math. Soc., 55 (1949) 450–452.

    MathSciNet  MATH  Google Scholar 

  113. H. N. Shapiro, On primitive abundant numbers, Comm. Pure Appl. Math., 21 (1968) 111–118.

    MathSciNet  MATH  Google Scholar 

  114. W. Sierpinski, Sur les nombres pseudoparfaits, Mat. Vesnik,2(17)(1965) 212213; MR 33 #7296.

    Google Scholar 

  115. W. Sierpinski, Elementary Theory of Numbers (ed. A. Schinzel ), PWN—Polish Scientific Publishers, Warszawa, 1987, pp. 184–186.

    Google Scholar 

  116. R. Steuerwald, Ein Satz über natürlich Zahlen N mit a(N) = 3N, Arch. Math., 5(1954) 449–451; MR 16 113h.

    Google Scholar 

  117. D. Suryanarayana, Quasi-perfect numbers II, Bull. Calcutta Math. Soc., 69 (1977) 421–426; MR 80m: 10003.

    Google Scholar 

  118. Charles R. Wall, The density of abundant numbers, Abstract 73T—A184, Notices Amer. Math. Soc.,20(1973) A-472.

    Google Scholar 

  119. Charles R. Wall, A Fibonacci-like sequence of abundant numbers, Fibonacci Quart., 22(1984) 349; MR 86d: 1 1018.

    Google Scholar 

  120. Charles R. Wall, Phillip L. Crews and Donald B. Johnson, Density bounds for the sum of divisors function, Math. Comput., 26 (1972) 773–777.

    MathSciNet  MATH  Google Scholar 

  121. Paul A. Weiner, The abundancy ratio, a measure of perfection, Math. Mag., 73 (2000) 307–310.

    MathSciNet  MATH  Google Scholar 

  122. Motoji Yoshitake, Abundant numbers, sum of whose divisors is equal to an integer times the number itself (Japanese), Szigaku Seminar, 18 (1979) no. 3, 50–55.

    Google Scholar 

  123. Andreas and Eleni Zachariou, Perfect, semi-perfect and Ore numbers, Bull. Soc. Math. Grèce(N.S.),13(1972) 12–22; MR 50 #12905.

    Google Scholar 

  124. K. Alladi, On arithmetic functions and divisors of higher order, J. Austral. Math. Soc. Ser. A, 23(1977) 9–27.

    Google Scholar 

  125. Eckford Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math. Z., 74(1960) 66–80; MR 22 #3707.

    Google Scholar 

  126. Eckford Cohen, The number of unitary divisors of an integer, Amer. Math. Monthly, 67(1960) 879–880; MR 23 # Al24.

    Google Scholar 

  127. Graeme L. Cohen, On an integer’s infinitary divisors, Math. Comput., 54 (1990) 395–411.

    MATH  Google Scholar 

  128. Graeme Cohen and Peter Hagis, Arithmetic functions associated with the infinitary divisors of an integer, Internat. J. Math. Math. Sci.,(to appear).

    Google Scholar 

  129. J. L. DeBoer, On the non-existence of unitary perfect numbers of certain type, Pi Mu Epsilon J. (submitted).

    Google Scholar 

  130. H. A. M. Frey, Uber unitär perfekte Zahlen, Elem. Math., 33(1978) 95–96; MR 81a: 10007.

    Google Scholar 

  131. S. W. Graham, Unitary perfect numbers with squarefree odd part, Fibonacci Quart., 27(1989) 317–322; MR 90i:11003.

    Google Scholar 

  132. Peter Hagis, Lower bounds for unitary multiperfect numbers, Fibonacci Quart., 22(1984) 140–143; MR 85j:11010.

    Google Scholar 

  133. Peter Hagis, Odd nonunitary perfect numbers, Fibonacci Quart, 28 (1990) 11–15; MR 90k:11006.

    Google Scholar 

  134. Peter Hagis and Graeme Cohen, Infinitary harmonic numbers, Bull. Austral. Math. Soc., 41(1990) 151–158; MR 91d:11001.

    Google Scholar 

  135. J6zsef Sândor, On Euler’s arithmetical function, Proc. Alg. Conf. Brasov 1988, 121–125.

    Google Scholar 

  136. V. Sitaramaiah and M. V. Subbarao, On unitary multiperfect numbers, Nieuw Arch. Wisk.(4), 16(1998) 57–61; MR 99h:11008.

    Google Scholar 

  137. V. Siva Rama Prasad and D. Ram Reddy, On unitary abundant numbers, Math. Student, 52(1984) 141–144 (1990) MR 91m:11002.

    Google Scholar 

  138. V. Siva Rama Prasad and D. Ram Reddy, On primitive unitary abundant numbers, Indian J. Pure Appl. Math, 21(1990) 40–44; MR 91f: 11004.

    Google Scholar 

  139. M. V. Subbarao, Are there an infinity of unitary perfect numbers? Amer. Math. Monthly, 77(1970) 389–390.

    Google Scholar 

  140. M. V. Subbarao and D. Suryanarayana, Sums of the divisor and unitary divisor functions, J. reine angew. Math., 302(1978) 1–15; MR 80d:10069.

    Google Scholar 

  141. M. V. Subbarao and L. J. Warren, Unitary perfect numbers, Canad. Math. Bull., 9(1966) 147–153; MR 33 #3994.

    Google Scholar 

  142. M. V. Subbarao, T. J. Cook, R. S. Newberry and J. M. Weber, On unitary perfect numbers, Delta, 3#1(Spring 1972) 22–26.

    Google Scholar 

  143. D. Suryanarayana, The number of k-ary divisors of an integer, Monatsh. Math., 72(1968) 445–450.

    Google Scholar 

  144. Charles R. Wall, The fifth unitary perfect number, Canad. Math. Bull., 18(1975) 115–122. See also Notices Amer. Math. Soc., 16(1969) 825.

    Google Scholar 

  145. Charles R. Wall, Unitary harmonic numbers, Fibonacci Quart, 21 (1983) 18–25.

    Google Scholar 

  146. Charles R. Wall, On the largest odd component of a unitary perfect number, Fibonacci Quart., 25(1987) 312–316; MR 88m:11005.

    Google Scholar 

  147. J. Alanen, O. Ore and J. G. Stemple, Systematic computations on amicable umbers, Math. Comput.,21(1967) 242–245; MR 36 #5058.

    Google Scholar 

  148. M. M. Artuhov, On some problems in the theory of amicable numbers (Russian), Acta Arith., 27 (1975) 281–291.

    MathSciNet  Google Scholar 

  149. S. Battiato, Ober die Produktion von 37803 neuen befreundeten Zahlenpaaren mit der Briitermethode, Master’s thesis, Wuppertal, June 1988.

    Google Scholar 

  150. Stefan Battiato and Walter Borho, Breeding amicable numbers in abundance II, Math. Comput., 70(2001) 1329–1333; MR 2002b: 11011.

    Google Scholar 

  151. S. Battiato and W. Borho, Are there odd amicable numbers not divisible by three? Math. Comput., 50(1988) 633–636; MR 89c: 1 1015.

    Google Scholar 

  152. W. Borho, On Thabit ibn Kurrah’s formula for amicable numbers, Math. Comput., 26 (1972) 571–578.

    MathSciNet  MATH  Google Scholar 

  153. W. Borho, Befreundete Zahlen mit gegebener Primteileranzahl, Math. Ann., 209 (1974) 183–193.

    MathSciNet  MATH  Google Scholar 

  154. W. Borho, Eine Schranke für befreundete Zahlen mit gegebener Teileranzahl, Math. Nachr., 63 (1974) 297–301.

    MathSciNet  MATH  Google Scholar 

  155. W. Borho, Some large primes and amicable numbers, Math. Comput., 36 (1981) 303–304.

    MathSciNet  MATH  Google Scholar 

  156. W. Borho and H. Hoffmann, Breeding amicable numbers in abundance, Math. Comput., 46 (1986) 281–293.

    MathSciNet  MATH  Google Scholar 

  157. P. Bratley and J. McKay, More amicable numbers, Math. Comput.,22(1968) 677–678; MR 37 #1299.

    Google Scholar 

  158. P. Bratley, F. Lunnon and J. McKay, Amicable numbers and their distribution, Math. Comput., 24 (1970) 431–432.

    MathSciNet  MATH  Google Scholar 

  159. H. Brown, A new pair of amicable numbers, Amer. Math. Monthly 46 (1939) 345.

    MATH  Google Scholar 

  160. Graeme L. Cohen, Stephen F. Gretton and Peter Hagis, Multiamicable numbers, Math. Comput., 64(1995) 1743–1753; MR 95m:11012.

    Google Scholar 

  161. Graeme L. Cohen and H. J. J. te Riele, On ’-amicable pairs, Math. Comput., 67(1998) 399–411; MR 98d:11009.

    Google Scholar 

  162. Patrick Costello, Four new amicable pairs, Notices Amer. Math. Soc, 21 (1974) A-483.

    Google Scholar 

  163. Patrick Costello, Amicable pairs of Euler’s first form, Notices Amer. Math. Soc., 22(1975) A-440.

    Google Scholar 

  164. Patrick Costello, Amicable pairs of the form (i, 1), Math. Comput., 56(1991) 859–865; MR 91k:11009.

    Google Scholar 

  165. Patrick Costello, New amicable pairs of type (2,2) and type (3,2), Math. Comput., 72(2003) 489–497; MR 2003i:11006.

    Google Scholar 

  166. P. Erdüs, On amicable numbers, Publ. Math. Debrecen, 4(1955) 108–111; MR 16, 998.

    Google Scholar 

  167. P. Erdös and G. J. Rieger, Ein Nachtrag über befreundete Zahlen, J. reine angew. Math., 273(1975) 220.

    Google Scholar 

  168. E. B. Escott, Amicable numbers, Scripta Math., 12(1946) 61–72; MR 8, 135.

    Google Scholar 

  169. L. Euler, De numeris amicabilibus, Opera Omnia, Ser.1, Vol.2, Teubner, Leipzig and Berlin, 1915, 63–162.

    Google Scholar 

  170. M. Garcia, New amicable pairs, Scripta Math.23(1957) 167–171; MR 20 #5158.

    Google Scholar 

  171. Mariano Garcia, New unitary amicable couples, J. Recreational Math.,17 (1984–5) 32–35.

    Google Scholar 

  172. Mariano Garcia, Favorable conditions for amicability, Hostos Community Coll. Math. J., New York, Spring 1989, 20–25.

    Google Scholar 

  173. Mariano Garcia, K-fold isotopic amicable numbers, J. Recreational Math., 19(1987) 12–14.

    Google Scholar 

  174. Mariano Garcia, New amicable pairs of Euler’s first form with greatest common factor a prime times a power of 2, Nieuw Arch. Wisk.(4),17(1999) 25–27; MR 2000d:11158.

    Google Scholar 

  175. Mariano Garcia, A million new amicable pairs, J. Integer seq.,4(2001) no.2 Article 01.2.6 3pp.(electronic).

    Google Scholar 

  176. Mariano Garcia, The first known type (7,1) amicable pair, Math. Comput., 72(2003) 939–940; MR 2003j:11007.

    Google Scholar 

  177. A. Gioia and A. M. Vaidya, Amicable numbers with opposite parity, Amer. Math. Monthly,74(1967) 969–973; correction 75(1968) 386; MR 36 #3711, 37 #1306.

    Google Scholar 

  178. Peter Hagis, On relatively prime odd amicable numbers, Math. Comput., 23(1969) 539–543; MR 40 #85.

    Google Scholar 

  179. Peter Hagis, Lower bounds for relatively prime amicable numbers of opposite parity, Math. Comput., 24(1970) 963–968.

    Google Scholar 

  180. Peter Hagis, Relatively prime amicable numbers of opposite parity, Math. Mag., 43(1970) 14–20.

    Google Scholar 

  181. Peter Hagis, Unitary amicable numbers, Math. Comput., 25 (1971) 915–918.

    MATH  Google Scholar 

  182. H.-J. Kanold, Über die Dichten der Mengen der vollkommenen und der befreundeten Zahlen, Math. Z., 61(1954) 180–185; MR 16, 337.

    Google Scholar 

  183. -J. Kanold, Über befreundete Zahlen I, Math. Nachr., 9(1953) 243–248; II ibid., 10 (1953) 99–111; MR 15, 506.

    Google Scholar 

  184. J. Kanold, Über befreundete Zahlen III, J. reine angew. Math.,234(1969) 207–215; MR 39 #122.

    Google Scholar 

  185. E. J. Lee, Amicable numbers and the bilinear diophantine equation, Math. Comput.,22(1968) 181–187; MR 37 #142.

    Google Scholar 

  186. E. J. Lee, On divisibility by nine of the sums of even amicable pairs, Math. Comput.,23(1969) 545–548; MR 40 #1328.

    Google Scholar 

  187. E. J. Lee and J. S. Madachy, The history and discovery of amicable numbers, part 1, J. Recreational Math.,5(1972) 77–93; part 2, 153–173; part 3, 231–249.

    Google Scholar 

  188. Ore, Number Theory and its History, McGraw-Hill, New York, 1948, p. 89.

    MATH  Google Scholar 

  189. Carl Pomerance, On the distribution of amicable numbers, J. reine angew. Math.,293/294(1977) 217–222; II 325(1981) 183–188; MR 56 #5402, 82m: 10012.

    Google Scholar 

  190. P. Poulet, 43 new couples of amicable numbers, Scripta Math., 14 (1948) 77.

    MATH  Google Scholar 

  191. H. J. J. te Riele, Four large amicable pairs, Math. Comput., 28 (1974) 309–312.

    MATH  Google Scholar 

  192. H. J. J. te Riele, On generating new amicable pairs from given amicable pairs, Math. Comput., 42 (1984) 219–223.

    MATH  Google Scholar 

  193. Herman J. J. te Riele, New very large amicable pairs, in Number Theory Noordwijkerhout 1983, Springer Lecture Notes in Math., 1068 (1984) 210–215.

    Google Scholar 

  194. H. J. J. te Riele, Computation of all the amicable pairs below 1010, Math.Comput.,47(1986) 361–368 and S9—S40.

    Google Scholar 

  195. H. J. J. te Riele, A new method for finding amicable pairs, in Mathematics of Computation 19.13–1993 (Vancouver, 1993), Proc. Sympos. Appl. Math. 48(1994) 577–581; MR 95m: 1 1013.

    Google Scholar 

  196. H. J. J. te Riele, W. Borho, S. Battiato, H. Hoffmann and E.J. Lee, Table of Amicable Pairs between 1010 and 1052, Centrum voor Wiskunde en Informatica, Note NM-N8603, Stichting Math. Centrum, Amsterdam, 1986.

    Google Scholar 

  197. Charles R. Wall, Selected Topics in Number Theory, Univ. of South Carolina Press, Columbia SC, 1974, P. 68.

    Google Scholar 

  198. Dale Woods, Construction of amicable pairs, #789–10–21, Abstracts Amer. Math. Soc., 3 (1982) 223.

    Google Scholar 

  199. S. Y. Yan, 68 new large amicable pairs, Comput. Math. Appl., 28(1994) 7174; MR 96a:11008; errata, 32(1996) 123–127; MR 97h: 1 1005.

    Google Scholar 

  200. S. Y. Yan and T. H. Jackson, A new large amicable pair, Comput. Math. Appl., 27(1994) 1–3; MR 94m: 1 1012.

    Google Scholar 

  201. Walter E. Beck and Rudolph M. Najar, Fixed points of certain arithmetic functions, Fibonacci Quart., 15(1977) 337–342; Zbl. 389. 10005.

    Google Scholar 

  202. Walter E. Beck and Rudolph M. Najar, Reduced and augmented amicable pairs to 108, Fibonacci Quart., 31(1993) 295–298; MR 94g: 1 1005.

    Google Scholar 

  203. Peter Hagis and Graham Lord, Quasi-amicable numbers, Math. Comput.,31 (1977) 608–611; MR 55 #7902; Zbl. 355.10010.

    Google Scholar 

  204. M. Lal and A. Forbes, A note on Chowla’s function, Math. Comput., 25(1971) 923–925; MR 45 #6737; Zbl. 245. 10004.

    Google Scholar 

  205. Andrzej Makowski, On some equations involving functions 0(n) and o - (n), Amer. Math. Monthly,67(1960) 668–670; correction 68(1961) 650; MR 24 #A76.

    Google Scholar 

  206. Jack Alanen, Empirical study of aliquot series, Math. Rep., 133 Stichting Math. Centrum Amsterdam, 1972; see Math. Comput., 28(1974) 878–880.

    Google Scholar 

  207. Manuel Benito, Wolfgang Creyaufmüller, Juan L. Varona and Paul Zimmermann, Aliquot sequence 3630 ends after reaching 100 digits, Experiment Math., 11(2002) 201–206; MR 2003j: 11150.

    Google Scholar 

  208. Manuel Benito and Juan L. Varona, Advances in aliquot sequences, Math. Comput.,68(1999) 389–393; MR 99c:11162.

    Google Scholar 

  209. E. Catalan, Propositions et questions diverses, Bull. Soc. Math. France, 16 (1887–88) 128–129.

    Google Scholar 

  210. John Stanley Devitt, Aliquot Sequences, MSc thesis, The Univ. of Calgary, 1976; see Math. Comput., 32(1978) 942–943.

    Google Scholar 

  211. J. S. Devitt, R. K. Guy and J. L. Selfridge, Third report on aliquot sequences, Congr. Numer. XVIII, Proc. 6th Manitoba Conf. Numer. Math., 1976, 177–204; MR 80d: 10001.

    Google Scholar 

  212. L. E. Dickson, Theorems and tables on the sum of the divisors of a number, Quart. J. Math., 44(1913) 264–296.

    Google Scholar 

  213. Paul Erdös, On asymptotic properties of aliquot sequences, Math. Comput., 30(1976) 641–645.

    Google Scholar 

  214. Andrew W. P. Guy and Richard K. Guy, A record aliquot sequence, in Mathematics of Computation 1943–1993 (Vancouver, 1993), Proc. Sympos. Appl. Math., ( 1994 ) Amer. Math. Soc., Providence RI, 1984.

    Google Scholar 

  215. Richard K. Guy, Aliquot sequences, in Number Theory and Algebra, Academic Press, 1977, 111–118; MR 57 #223; Zbl. 367.10007.

    Google Scholar 

  216. Richard K. Guy and J. L. Selfridge, Interim report on aliquot sequences, Congr. Numer. V, Proc. Conf. Numer. Math., Winnipeg, 1971, 557–580; MR 49 #194; Zbl. 266. 10006.

    Google Scholar 

  217. Richard K. Guy and J. L. Selfridge, Combined report on aliquot sequences, The Univ. of Calgary Math. Res. Rep. 225(May, 1974 ).

    Google Scholar 

  218. Richard K. Guy and J. L. Selfridge, What drives an aliquot sequence? Math. Comput., 29(1975) 101–107; MR 52 #5542; Zbl. 296.10007. Corrigendum, ibid., 34(1980) 319–321; MR 81f:10008; Zbl. 423. 10005.

    Google Scholar 

  219. Richard K. Guy and M. R. Williams, Aliquot sequences near 1012, Congr. Numer. XII, Proc. 4th Manitoba Conf. Numer. Math., 1974, 387–406; MR 52 #242; Zbl. 359. 10007.

    Google Scholar 

  220. Richard K. Guy, D. H. Lehmer, J. L. Selfridge and M. C. Wunderlich, Second report on aliquot sequences, Congr. Numer. IX, Proc. 3rd Manitoba Conf. Numer. Math., 1973, 357–368; MR 50 #4455; Zbl. 325. 10007.

    Google Scholar 

  221. H. W. Lenstra, Problem 6064, Amer. Math. Monthly, 82(1975) 1016; solution 84 (1977) 580.

    MathSciNet  Google Scholar 

  222. G. Aaron Paxson, Aliquot sequences (preliminary report), Amer. Math. Monthly, 63(1956) 614. See also Math. Comput., 26 (1972) 807–809. P. Poulet, La chasse aux nombres, Fascicule I, Bruxelles, 1929.

    Google Scholar 

  223. P. Poulet, Nouvelles suites arithmétiques, Sphinx, Deuxième Année (1932) 53–54.

    Google Scholar 

  224. H. J. J. te Riele, A note on the Catalan-Dickson conjecture, Math. Comput., 27(1973) 189–192; MR 48 #3869; Zbl. 255. 10008.

    Google Scholar 

  225. H. J. J. te Riele, Iteration of number theoretic functions, Report NN 30/83, Math. Centrum, Amsterdam, 1983.

    Google Scholar 

  226. Paul Erdös, A mélange of simply posed conjectures with frustratingly elusive solutions, Math. Mag., 52 (1979) 67–70.

    MathSciNet  MATH  Google Scholar 

  227. P. Erdös, Problems and results in number theory and graph theory, Congressus Numerantium 27, Proc. 9th Manitoba Conf. Numerical Math. Comput., 1979, 3–21.

    Google Scholar 

  228. Richard K. Guy and Marvin C. Wunderlich, Computing unitary aliquot sequences–a preliminary report, Congressus Numerantium 27, Proc. 9th Manitoba Conf. Numerical Math. Comput., 1979, 257–270.

    Google Scholar 

  229. P. Hagis, Unitary amicable numbers, Math. Comput.,25(1971) 915–918; MR 45 #8599.

    Google Scholar 

  230. Peter Hagis, Unitary hyperperfect numbers, Math. Comput.,36(1981) 299301.

    Google Scholar 

  231. M. Lal, G. Tiller and T Summers, Unitary sociable numbers, Congressus Numerantium 7,Proc. 2nd Manitoba Conf. Numerical Math., 1972, 211–216: MR 50 #4471.

    Google Scholar 

  232. Rudolph M. Najar, The unitary amicable pairs up to 108, Internat. J. Math. Math. Sci., 18(1995) 405–410; MR 96c: 1 1011.

    Google Scholar 

  233. H. J. J. to Riele, Unitary Aliquot Sequences, MR139/72, Mathematisch Centrum, Amsterdam, 1972; reviewed Math. Comput., 32(1978) 944–945; Zbl. 251. 10008.

    Google Scholar 

  234. H. J. J. to Riele, Further Results on Unitary Aliquot Sequences, NW12/73, Mathematisch Centrum, Amsterdam, 1973; reviewed Math. Comput., 32 (1978) 945.

    Google Scholar 

  235. H. J. J. to Riele, A Theoretical and Computational Study of Generalized Aliquot Sequences,MCT72, Mathematisch Centrum, Amsterdam, 1976; reviewed Math. Comput.,32(1978) 945–946; MR 58 #27716.

    Google Scholar 

  236. R. Wall, Topics related to the sum of unitary divisors of an integer, PhD thesis, Univ. of Tennessee, 1970.

    Google Scholar 

  237. Dieter Bode, Über eine Verallgemeinerung der volkommenen Zahlen, Dissertation, Braunschweig, 1971.

    Google Scholar 

  238. G. G. Dandapat, J. L. Hunsucker and C. Pomerance, Some new results on odd perfect numbers, Pacific J. Math.,57(1975) 359–364; 52 #5554.

    Google Scholar 

  239. P. Erdös, Some remarks on the iterates of the cß and a functions, Colloq. Math., 17 (1967) 195–202.

    MathSciNet  MATH  Google Scholar 

  240. J. L. Hunsucker and C. Pomerance, There are no odd super perfect numbers less than 7. 1024, Indian J. Math., 17(1975) 107–120; MR 82b: 10010.

    Google Scholar 

  241. H.-J. Kanold, Über “Super perfect numbers,” Elem. Math.,24(1969) 61–62; MR 39 #5463.

    Google Scholar 

  242. Graham Lord, Even perfect and superperfect numbers, Elem. Math., 30 (1975) 87–88.

    MathSciNet  MATH  Google Scholar 

  243. Helmut Maier, On the third iterates of the 0- and a-functions, Colloq. Math., 49 (1984) 123–130.

    MathSciNet  Google Scholar 

  244. Andrzej Makowski, On two conjectures of Schinzel, Elem. Math., 31 (1976) 140–141.

    MathSciNet  Google Scholar 

  245. Schinzel, Ungelöste Probleme Nr. 30, Elem. Math., 14 (1959) 60–61.

    MathSciNet  Google Scholar 

  246. V. Sitaramaiah and M. V. Subbarao, On the equation a* (a* (n)) = 2n, Utilitas Math., 53(1998) 101–124; MR 99a: 1 1009.

    Google Scholar 

  247. Suryanarayana, Super perfect numbers, Elem. Math.,24(1969) 16–17; MR 39 #5706.

    Google Scholar 

  248. Suryanarayana, There is no superperfect number of the form p2’, Elern. Math.,28(1973) 148–150; MR 48 #8374.

    Google Scholar 

  249. P. Erdös, Über die Zahlen der Form a(n) - n and n - 0(n), Elem. Math.,28(1973) 83–86; MR 49 #2502.

    Google Scholar 

  250. Paul Erdös, Some unconventional problems in number theory, Astérisque, 61(1979) 73–82; MR 81h: 10001.

    Google Scholar 

  251. Nicolae Ciprian Bonciocat, Congruences for the convolution of divisor sum function, Bull. Greek Math. Soc., 46(2002) 161–170; MR 2003e: 11111.

    Google Scholar 

  252. P. Erdös, Remarks on number theory II: some problems on the a function, Acta Arith.,5(1959) 171–177; MR 21 #6348.

    Google Scholar 

  253. Mihaly Bencze, A contest problem and its application (Hungarian), Mat. Lapok Ifjûscigi Foly6irat (Romania), 91 (1986) 179–186.

    Google Scholar 

  254. J.-M. De Koninck, On the solutions of a2(n) = a2(n + t), Ann. Univ. Sci. Budapest. Sect. Comput., 21(2002) 127–133; MR 2003h: 11007.

    Google Scholar 

  255. Richard K. Guy and Daniel Shanks, A constructed solution of a(n) = a(n +1), Fibonacci Quart.,12(1974) 299; MR 50 #219.

    Google Scholar 

  256. Pentti Haukkanen, Some computational results concerning the divisor functions d(n) and a(n), Math. Student, 62(1993) 166–168; MR 90j: 1 1006.

    Google Scholar 

  257. John L. Hunsucker, Jack Nebb Si Robert E. Stearns, Computational results concerning some equations involving a(n), Math. Student, 41 (1973) 285–289.

    MathSciNet  Google Scholar 

  258. W. E. Mientka and R. L. Vogt, Computational results relating to problems concerning a(n), Mat. Vesnik, 7 (1970) 35–36.

    MathSciNet  Google Scholar 

  259. Erd6s, On arithmetical properties of Lambert series, J. Indian Math. Soc.(N.S.) 12 (1948) 63–66.

    MathSciNet  Google Scholar 

  260. P. Erdös, On the irrationality of certain series: problems and results, in New Advances in Transcendence Theory, Cambridge Univ. Press, 1988, pp. 102–109.

    Google Scholar 

  261. P. Erd6s and M. Kac, Problem 4518, Amer. Math. Monthly 60(1953) 47. Solution R. Breusch, 61 (1954) 264–265.

    Google Scholar 

  262. M. Sugunamma, PhD thesis, Sri Venkataswara Univ., 1969.

    Google Scholar 

  263. N. C. Ankeny, E. Artin and S. Chowla, The class-number of real quadratic number fields, Ann. of Math.(2), 56(1952) 479–493; MR 14, 251.

    Google Scholar 

  264. R. C. Baker and J. Brüdern, On sums of two squarefull numbers, Math. Proc. Cambridge Philos. Society, 116(1994) 1–5; MR 95f: 1 1073.

    Google Scholar 

  265. P. T. Bateman and E. Grosswald, On a theorem of Erdös and Szekeres, Illinois J. Math., 2 (1958) 88–98.

    MathSciNet  MATH  Google Scholar 

  266. B. D. Beach, H. C. Williams and C. R. Zarnke, Some computer results on units in quadratic and cubic fields, Proc. 25th Summer Meet. Canad. Math. Congress, Lakehead, 1971, 609–648; MR 49 #2656.

    Google Scholar 

  267. Cai Ying-Chun, On the distribution of square-full integers, Acta Math. Sinica (N.S.) 13(1997) 269–280; MR 98j: 1 1070.

    Google Scholar 

  268. Catalina Calderon and M. J. Velasco, Waring’s problem on squarefull numbers, An. Univ. Bucuregti Mat., 44 (1995) 3–12.

    Google Scholar 

  269. Cao Xiao-Dong, The distribution of square-full integers, Period. Math. Hun-gar., 28(1994) 43–54; MR 95k: 1 1119.

    Google Scholar 

  270. J. H. E. Cohn, A conjecture of Erdös on 3-powerful numbers. Math. Comput., 67(1998) 439–440; MR 98c:11104.

    Google Scholar 

  271. David Drazin and Robert Gilmer, Complements and comments, Amer. Math. Monthly, 78(1971) 1104–1106 (esp. p. 1106).

    Google Scholar 

  272. W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math., 92(1988) 73–90; MR 89d:11033.

    Google Scholar 

  273. P. Erdös, Problems and results on consecutive integers, Eureka, 38(1975–76) 3–8.

    Google Scholar 

  274. P. Erdös and G. Szekeres, Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Litt. Sci. Szeged, 7(1934) 95–102; Zbl. 10, 294.

    Google Scholar 

  275. S. W. Golomb, Powerful numbers, Amer. Math. Monthly, 77(1970) 848–852; MR 42 #1780.

    Google Scholar 

  276. Ryuta Hashimoto, Ankeny-Artin-Chowla conjecture and continued fraction expansion, J. Number Theory, 90(2001) 143–153; MR 2002e:11149.

    Google Scholar 

  277. D. R. Heath-Brown, Ternary quadratic forms and sums of three square-full numbers, Séminaire de Théorie des Nombres, Paris, 1986–87, Birkhäuser, Boston, 1988; MR 91b: 1 1031.

    Google Scholar 

  278. D. R. Heath-Brown, Sums of three square-full numbers, in Number Theory, I (Budapest, 1987 ), Colloq. Math. Soc. Janos Bolyai, 51(1990) 163–171; MR 91i: 11036.

    Google Scholar 

  279. D. R. Heath-Brown, Square-full numbers in short intervals, Math. Proc. Cambridge Philos. Soc., 110(1991) 1–3; MR 92c:11090.

    Google Scholar 

  280. M.N. Huxley and O. Trifonov, The square-full numbers in an interval, Math. Proc. Cambridge Philos. Soc., 119(1996) 201–208; MR 96k:11114.

    Google Scholar 

  281. Aleksander Ivie, On the asymptotic formulas for powerful numbers, Publ. Math. Inst. Beograd (N.S.), 23(37)(1978) 85–94; MR 58 #21977.

    Google Scholar 

  282. Ivié and P. Shiue, The distribution of powerful integers, Illinois J. Math., 26(1982) 576–590; MR 84a:10047.

    Google Scholar 

  283. H. Iwaniec, Fourier coefficients of modular forms of half-integral weight, Invent. Math., 87(1987) 385–401; MR 88b:11024.

    Google Scholar 

  284. C.-H. Jia, On square-full numbers in short intervals, Acta Math. Sinica (N.S.) 5(1987) 614–621.

    Google Scholar 

  285. Ekkehard Krätzel, On the distribution of square-full and cube-full numbers, Monatsh. Math., 120(1995) 105–119; MR 96f:11116.

    Google Scholar 

  286. Hendrik W. Lenstra, Solving the Pell equation, Notices Amer. Math. Soc., 49(2002) 182–192.

    Google Scholar 

  287. Liu Hong-Quan, On square-full numbers in short intervals, Acta Math. Sinica (N.S.), 6(1990) 148–164; MR 91g:11105.

    Google Scholar 

  288. Liu Hong-Quan, The number of squarefull numbers in an interval, Acta Arith., 64(1993) 129–149.

    Google Scholar 

  289. Liu Hong-Quan, The number of cube-full numbers in an interval, Acta Arith., 67(1994) 1–12; MR 95h:11100.

    Google Scholar 

  290. Liu Hong-Quan, The distribution of 4-full numbers, Acta Arith., 67(1994) 165–176.

    Google Scholar 

  291. Liu Hong-Quan, The distribution of square-full numbers, Ark. Mat., 32(1994) 449–454; MR 97a:11146.

    Google Scholar 

  292. Andrzej Makowski, On a problem of Golomb on powerful numbers, Amer. Math. Monthly, 79(1972) 761.

    Google Scholar 

  293. Andrzej Makowski, Remarks on some problems in the elementary theory of numbers, Acta Math. Univ. Comenian., 50/51(1987) 277–281; MR 90e:11022.

    Google Scholar 

  294. Wayne L. McDaniel, Representations of every integer as the difference of powerful numbers, Fibonacci Quart., 20 (1982) 85–87.

    MathSciNet  MATH  Google Scholar 

  295. H. Menzer, On the distribution of powerful numbers, Abh. Math. Sem. Univ. Hamburg, 67(1997) 221–237; MR 98h:11115.

    Google Scholar 

  296. Richard A. Mollin, The power of powerful numbers, Internat. J. Math. Math. Sci., 10(1987) 125–130; MR 88e:11008.

    Google Scholar 

  297. Richard A. Mollin and P. Gary Walsh, On non-square powerful numbers, Fibonacci Quart., 25(1987) 34–37; MR 88f:11006.

    Google Scholar 

  298. Richard A. Mollin and P. Gary Walsh, On powerful numbers, Internat. J. Math. Math. Sci., 9(1986) 801–806; MR 88f:11005.

    Google Scholar 

  299. Richard A. Mollin and P. Gary Walsh, A note on powerful numbers, quadratic fields and the Pellian, CR Math. Rep. Acad. Sci. Canada, 8(1986) 109–114; MR 87g: 1 1020.

    Google Scholar 

  300. Richard A. Mollin and P. Gary Walsh, Proper differences of non-square powerful numbers, CR Math. Rep. Acad. Sci. Canada, 10(1988) 71–76; MR 89e:11003.

    Google Scholar 

  301. L. J. Mordell, On a pellian equation conjecture, Acta Arith., 6(1960) 137–144; MR 22 #9470.

    Google Scholar 

  302. B. Z. Moroz, On representation of large integers by integral ternary positive definite quadratic forms, Journées Arithmétiques (Geneva 1991, Astérisque, 209(1992), 15, 275–278; MR 94a: 1 1051.

    Google Scholar 

  303. Abderrahmane Nitaj, On a conjecture of Erdios on 3-powerful numbers, Bull. London Math. Soc., 27(1995) 317–318; MR 96b:11045.

    Google Scholar 

  304. R. W. K. Odoni, On a problem of Erdös on sums of two squarefull numbers, Acta Arith., 39(1981) 145–162; MR 83c:10068.

    Google Scholar 

  305. Laurentiu Panaitopol, On square free integers, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 43(91)(2000) 19–23; MR.2002k:11156.

    Google Scholar 

  306. J. van der Poorten, H. J. J. te Riele and H. C. Williams, Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100 000 000 000, Math. Comput., 70(2001) 1311–1328; MR 2001j:11125; corrigenda and addition, 72(2003) 521–523; MR 2003g: 11162.

    Google Scholar 

  307. V. M. Prasad and V. V. S. Sastri, An asymptotic formula for partitions into square full numbers, Bull. Calcutta Math. Soc., 86(1993) 403–408; MR 96b: 1 1138.

    Google Scholar 

  308. Peter Georg Schmidt, On the number of square-full integers in short intervals, Acta Arith., 50(1988) 195–201; corrigendum, 54(1990) 251–254; MR 89f: 1 1131.

    Google Scholar 

  309. R. Seibold and E. Krätzel, Die Verteilung der k-vollen und l-freien Zahlen, Abh. Math. Sem. Univ. Hamburg, 68(1998) 305–320.

    Google Scholar 

  310. W. A. Sentance, Occurrences of consecutive odd powerful numbers, Amer. Math. Monthly, 88(1981) 272–274.

    Google Scholar 

  311. P. Shiue, On square-full integers in a short interval, Glasgow Math. J., 25 (1984) 127–134.

    MathSciNet  Google Scholar 

  312. P. Shiue, The distribution of cube-full numbers, Glasgow Math. J., 33(1991) 287–295. MR 92g: 1 1091.

    Google Scholar 

  313. P. Shiue, Cube-full numbers in short intervals, Math. Proc. Cambridge Philos. Soc., 112 (1992) 1–5; MR 93d: 1 1097.

    Google Scholar 

  314. J. Stephens and H. C. Williams, Some computational results on a problem concerning powerful numbers, Math. Comput., 50 (1988) 619–632.

    MathSciNet  MATH  Google Scholar 

  315. Sury, On a conjecture of Chowla et al., J. Number Theory, 72(1998) 137139; it MR 99f: 1 1005.

    Google Scholar 

  316. Suryanarayana, On the distribution of some generalized square-full integers, Pacific J. Math, 72(1977) 547–555; MR 56 #11933.

    Google Scholar 

  317. Suryanarayana and R. Sitaramachandra Rao, The distribution of square-full integers, Ark. Mat, 11(1973) 195–201; MR 49 #8948.

    Google Scholar 

  318. Charles Vanden Eynden, Differences between squares and powerful numbers, *816–11–305, Abstracts Amer. Math. Soc., 6 (1985) 20.

    Google Scholar 

  319. David T. Walker, Consecutive integer pairs of powerful numbers and related Diophantine equations, Fibonacci Quart, 14(1976) 111–116; MR 53 #13107.

    Google Scholar 

  320. Wu Jiel, On the distribution of square-full and cube-full integers, Monatsh. Math, 126(1998) 339–358.

    Google Scholar 

  321. Wu Jiel, On the distribution of square-full integers, Arch. Math. (Basel), 77(2001) 233–240; MR 2002g:11136.

    Google Scholar 

  322. Yu Gang’, The distribution of 4-full numbers, Monatsh. Math., 118(1994) 145–152; MR 95i: 1 1101.

    Google Scholar 

  323. Yuan Ping-Zhi, On a conjecture of Golomb on powerful numbers (Chinese. English summary), J. Math. Res. Exposition, 9(1989) 453–456; MR 91c: 1 1009.

    Google Scholar 

  324. G. Straus and M. V. Subbarao, On exponential divisors, Duke Math. J, 41(1974) 465–471; MR 50 #2053.

    Google Scholar 

  325. M. V. Subbarao, On some arithmetic convolutions, Proc. Conf. Kalamazoo MI, 1971, Springer Lecture Notes in Math, 251(1972) 247–271; MR 49 #2510.

    Google Scholar 

  326. M. V. Subbarao and D. Suryanarayana, Exponentially perfect and unitary perfect numbers, Notices Amer. Math. Soc., 18 (1971) 798.

    Google Scholar 

  327. P. Erdös, Problem P. 307, Canad. Math. Bull., 24 (1981) 252.

    Google Scholar 

  328. Paul Erdös and Hugh L. Montgomery, Sums of numbers with many divisors, J. Number Theory, 75(1999) 1–6; MR 99k: 1 1153.

    Google Scholar 

  329. Anthony D. Forbes, Fifteen consecutive integers with exactly four prime factors, Math. Comput., 71(2002) 449–452; MR 2002g: 11012.

    Google Scholar 

  330. P. Erdös and L. Mirsky, The distribution of values of the divisor function d(n), Proc. London Math. Soc.(3), 2 (1952) 257–271.

    Google Scholar 

  331. P. Erdös, C. Pomerance and A. Sârközy, On locally repeated values of certain arithmetic functions, II, Acta Math. Hungarica, 49(1987) 251–259; MR 88c: 1 1008.

    Google Scholar 

  332. J. Fabrykowski and M. V. Subbarao, Extension of a result of Erdös concerning

    Google Scholar 

  333. the divisor function, Utilitas Math, 38(1990) 175–181; MR 92d:11101.

    Google Scholar 

  334. D. R. Heath-Brown, A parity problem from sieve theory, Mathematika, 29

    Google Scholar 

  335. -6 (esp. p. 6).

    Google Scholar 

  336. D. R. Heath-Brown, The divisor function at consecutive integers, Mathematika, 31 (1984) 141–149.

    MathSciNet  MATH  Google Scholar 

  337. Adolf Hildebrand, The divisors function at consecutive integers, Pacific J. Math., 129 (1987) 307–319; MR 88k: 1 1062.

    Google Scholar 

  338. J. Hildebrand, Erdös’ problems on consecutive integers, Paul Erdös and his mathematics, I (Budapest, 1999) 305–317, Bolyai Soc. Math. Stud., 11, Janos Bolyai Math. Soc., Budapest, 2002; MR 2004b: 11142.

    Google Scholar 

  339. Kan Jia-Hai and Shan Zun, On the divisor function d(n), Mathematika, 43(1997) 320–322; II 46(1999) 419–423; MR 98b: 11101; 2003c: 11122.

    Google Scholar 

  340. M. Nair and P. Shiue, On some results of Erdös and Mirsky, J. London Math. Soc.(2), 22(1980) 197–203; and see ibid., 17 (1978) 228–230.

    Google Scholar 

  341. Pinner, M.Sc. thesis, Oxford, 1988.

    Google Scholar 

  342. Schinzel, Sur un problème concernant le nombre de diviseurs d’un nombre naturel, Bull. Acad. Polon. Sci. Ser. sci. math. astr. phys., 6 (1958) 165–167.

    MathSciNet  MATH  Google Scholar 

  343. Schinzel and W. Sierpinski, Sur certaines hypothèses concernant les nombres premiers, Acta Arith., 4 (1958) 185–208.

    Google Scholar 

  344. W. Sierpinski, Sur une question concernant le nombre de diviseurs premiers d’un nombre naturel, Colloq. Math., 6 (1958) 209–210.

    MathSciNet  MATH  Google Scholar 

  345. OEIS: A000005, A005237–005238, A006558, A006601, A019273, A039665, A049051.

    Google Scholar 

  346. Alan Baker, Logarithmic forms and the abc-conjecture, Number Theory (Eger), 1996, de Gruyter, Berlin, 1998, 37–44; MR 99e: 1 1101.

    Google Scholar 

  347. Frits Beukers, The Diophantine equation Ax° + By 4 = Cz’, Duke Math. J., 91(1998) 61–88: MR 99f: 1 1039.

    Google Scholar 

  348. Niklas Broberg, Some examples related to the abc-conjecture for algebraic number fields, Math. Comput., 69(2000) 1707–1710; MR 2001a:11117.

    Google Scholar 

  349. Jerzy Browkin and Juliusz Brzezinski, Some remarks on the abc-conjecture, Math. Comput., 62(1994) 931–939; MR 94g:11021.

    Google Scholar 

  350. Jerzy Browkin, Michael Filaseta, G. Greaves and Andrzej Schinzel, Squarefree values of polynomials and the abc-conjecture, Sieve methods, exponential sums, and their applications in number theory (Cardiff 1995 ) 65–85, London Math. Soc. Lecture Note Ser., 237, Cambridge Univ. Press, 1997.

    Google Scholar 

  351. Juliusz Brzezinski, ABC on the abc-conjecture, Normat, 42(1994) 97–107; MR 95h:11024.

    Google Scholar 

  352. Cao Zhen-Fu, A note on the Diophantine equation a + by = cz, Acta Arith., 91(1999) 85–93; MR 2000m:11029.

    Google Scholar 

  353. Cao Zhen-Fu and Dong Xiao-Lei, The Diophantine equation, Proc. Japan Acad. Ser. A Math. Sci., 77(2001) 1–4; MR 2002c: 11027.

    Google Scholar 

  354. Cao Zhen-Fu, Dong Xiao-Lei and Li Zhong, A new conjecture concerning the Diophantine equation x2+by = cz, Proc. Japan Acad. Ser. A Math. Sci., 78 (2002) 199–202.

    Google Scholar 

  355. Todd Cochran and Robert E. Dressler, Gaps between integers with the same prime factors, Math. Comput., 68(1999) 395–401; MR 99c:11118.

    Google Scholar 

  356. Henri Darmon, Faltings plus epsilon, Wiles plus epsilon, and the generalized Fermat equation, C. R. Math. Rep. Acad. Sci. Canada, 19(1997) 3–14; corrigendum, 64; MR 98h:11034ab.

    Google Scholar 

  357. Henri Darmon and Andrew Granville, On the equations. Bull. London Math. Soc., 27(1995) 513–543; MR 96e: 1 1042.

    Google Scholar 

  358. Michael Filaseta and Sergei Konyagin, On a limit point associated with the abc-conjecture, Colloq. Math., 76(1998) 265–268; MR 99b: 1 1029.

    Google Scholar 

  359. Andrew Granville, ABC allows us to count squarefrees, Internat. Math. Res. Notices, 1998 991–1009.

    Google Scholar 

  360. Andrew Granville and Thomas J. Tucker, It’s as easy as abc, Notices Amer. Math. Soc., 49(2002) 1224–1231; MR 2003f:11044.

    Google Scholar 

  361. Alain Kraus, On the equation a survey. Ramanujan J., 3(1999), no. 3, 315–333; MR 2001f:11046.

    Google Scholar 

  362. Serge Lang, Old and new conjectured diophantine inequalities, Bull. Amer. Math. Soc., 23(1990) 37–75.

    Google Scholar 

  363. Serge Lang, Die abc-Vermutung, Elem. Math., 48 (1993) 89–99; MR 94g: 1 1044.

    Google Scholar 

  364. Michel Langevin, Cas d’égalité pour le théorème de Mason et applications de la conjecture (abc), C. R. Acad. Sci. Paris Sér I math., 317(1993) 441–444; MR 94k: 1 1035.

    Google Scholar 

  365. Michel Langevin, Sur quelques conséquences de la conjecture (abc) en arithmétique et en logique, Rocky Mountain J. Math., 26(1996) 1031–1042; MR 97k: 1 1052.

    Google Scholar 

  366. Le Mao-Hua, The Diophantine equation x 2 +Dm = p’, Acta Arith., 52(1989) 255–265; MR 90j:11029.

    Google Scholar 

  367. Le Mao-Hua, A note on the Diophantine equation x 2 + by = cz, Acta Arith., 71(1995) 253–257; MR 96d:11037.

    Google Scholar 

  368. Allan I. Liff, On solutions of the equation x a+yb = zC, Math. Mag, 41(1968) 174–175; MR 38 #5711.

    Google Scholar 

  369. W. Masser, On abc and discriminants, Proc. Amer. Math. Soc., 130(2002) 3141–3150.

    Google Scholar 

  370. R. Daniel Mauldin, A generalization of Fermat’s last theorem: the Beal conjecture and prize problem, Notices Amer. Math. Soc., 44(1997) 1436–1437; MR 98j:11020 (quoted above).

    Google Scholar 

  371. Abderrahmane Nitaj, An algorithm for finding good abc-examples, C. R. Acad. Sci. Paris Sér I math., 317(1993) 811–815.

    Google Scholar 

  372. Abderrahmane Nitaj, Algorithms for finding good examples for the abc and Szpiro conjectures, Experiment. Math., 2(1993) 223–230; MR 95b:11069.

    Google Scholar 

  373. Abderrahmane Nitaj, La conjecture abc, Enseign. Math., (2) 42(1996) 3–24; MR 97a: 1 1051.

    Google Scholar 

  374. Abderrahmane Nitaj, Aspects expérimentaux de la conjecture abc, Number Theory (Paris 1993–1994), 145–156, London Math. Soc. Lecture Note Ser., 235, Cambridge Univ. Press, 1996; MR 99f:11041.

    Google Scholar 

  375. Makowski, On a problem of Erdös, Enseignement Math.(2), 14(1968) 193. J. Oesterlé, Nouvelles approches du “thre” de Fermat, Sém. Bourbaki, 2/88, exposé #694.

    Google Scholar 

  376. Bjorn Poonen, Some Diophantine equations of the form , Acta Arith., 86(1998) 193–205; MR 99h:11034.

    Google Scholar 

  377. Paulo Ribenboim, On square factors of terms in binary recurring sequences and the ABC-conjecture, Publ. Math. Debrecen, 59 (2001) 459–469.

    MathSciNet  MATH  Google Scholar 

  378. Paulo Ribenboim and Peter Gary Walsh, The ABC-conjecture and the powerful part of terms in binary recurring sequences, J. Number Theory, 74(1999) 134147; MR 99k: 1 1047.

    Google Scholar 

  379. L. Stewart and Yu Kun-Rui, On the abc-conjecture, Math. Ann., 291(1991) 225–230; MR 92k:11037; II, Duke Math. J., 108(2001) 169–181; MR 2002e: 11046.

    Google Scholar 

  380. Nobuhiro Terai, The Diophantine equation a’+by = cz, I, II, III, Proc. Japan Acad. Ser. A Math. Sci., 70(1994) 22–26; 71(1995) 109–110; 72(1996) 20–22; MR 95b:11033; 96m:11022; 98a:11038.

    Google Scholar 

  381. R. Tijdeman, The number of solutions of Diophantine equations, in Number Theory, II (Budapest, 1987), Colloq. Math. Soc. Jcinos Bolyai, 51(1990) 671–696.

    Google Scholar 

  382. Paul Vojta, A more general abc-conjecture, Internat. Math. Res. Notices, 1998 1103–1116; MR 99k:11096.

    Google Scholar 

  383. Yuan Ping-Zhi and Wang Jia-Bao, On the Diophantine equation x 2 + by = cz, Acta Arith., 84(1998) 145–147.

    Google Scholar 

  384. Hans Riesel, En Bok om Primtal (Swedish), Lund, 1968; supplement Stockholm, 1977; MR 42 #4507, 58 #10681.

    Google Scholar 

  385. Hans Riesel, Prime Numbers and Computer Methods for Factorization, Progress in Math., 126, Birkhäuser, 2nd ed. 1994.

    Google Scholar 

  386. Robert Baillie, New primes of the form k 2 + 1, Math. Comput., 33(1979) 1333–1336; MR 80h: 10009.

    Google Scholar 

  387. Robert Baillie, G. V. Cormack and H. C. Williams, The problem of Sierpinski concerning k • 2 + 1 Math. Comput., 37(1981) 229–231; corrigendum, 39 (1982) 308.

    MathSciNet  MATH  Google Scholar 

  388. Wieb Bosma, Explicit primality criteria for h•2/`+1, Math. Comput., 61 (1993) 97–109.

    MATH  Google Scholar 

  389. A. Buell and J. Young, Some large primes and the Sierpinski problem, SRC Technical Report 88–004, Supercomputing Research Center, Lanham MD, May 1988.

    Google Scholar 

  390. V. Cormack and H. C. Williams, Some very large primes of the form k • 2’ + 1, Math. Comput., 35(1980) 1419–1421; MR 81i:10011; corrigendum, Wilfrid Keller, 38(1982) 335; MR 82k:10011.

    Google Scholar 

  391. Michael Filaseta, Coverings of the integers associated with an irreducibility theorem of A. Schinzel, Number Theory for the Millenium, II (Urbana IL, 2000) 1–24, AKPeters, Natick MA, 2002; MR 2003k:11015.

    Google Scholar 

  392. Anatoly S. Izotov, A note on Sierpinski numbers, Fibonacci Quart., 33(1995) 206–207; MR 96f:11020.

    Google Scholar 

  393. Jaeschke, On the smallest k such that all , Math. Comput., 40(1983) 381–384; MR 84k:10006; corrigendum, 45(1985) 637; MR 87b:11009.

    Google Scholar 

  394. Wilfrid Keller, Factors of Fermat numbers and large primes of the form, Math. Comput., 41(1983) 661–673; MR 85b:11119; II (incomplete draft, 92–02-19).

    Google Scholar 

  395. Wilfrid Keller, Woher kommen die größten derzeit bekannten Primzahlen? Mitt. Math. Ges. Hamburg, 12(1991) 211–229;MR 92j:11006.

    Google Scholar 

  396. N. S. Mendelsohn, The equation 0(x) = k, Math. Mag., 49(1976) 37–39; MR 53 #252.

    Google Scholar 

  397. Raphael M. Robinson, A report on primes of the form k•2 + 1 and on factors of Fermat numbers, Proc. Amer. Math. Soc., 9(1958) 673–681; MR 20 #3097.

    Google Scholar 

  398. J. L. Selfridge, Solution of problem 4995, Amer. Math. Monthly, 70 (1963) 101.

    MathSciNet  Google Scholar 

  399. W. Sierpinski, Sur un problème concernant les nombres k • 2’ + 1, Elem. Math., 15(1960) 73–74; MR 22 #7983; corrigendum, 17(1962) 85.

    Google Scholar 

  400. W. Sierpinski, 250 Problems in Elementary Number Theory, Elsevier, New York, 1970, Problem 118, pp. 10 and 64.

    Google Scholar 

  401. R. G. Stanton, Further results on covering integers of the form 1 + k * 2` v by primes, Combinatorial mathematics, VIII (Geelong, 1980), Springer Lecture Notes in Math., 884(1981) 107–114; MR 84j:10009.

    Google Scholar 

  402. R. G. Stanton and H. C. Williams, Further results on covering of the integers 1 + k2m by primes, Combinatorial Math. VIII, Lecture Notes in Math., 884, Springer-Verlag, Berlin-New York, 1980, 107–114.

    Google Scholar 

  403. Yong Gao-Chen, On integers of the forms kr - 2 n and kr2m + 1, J. Number Theory, 98(2003) 310–319; MR bf2003m:11004.

    Google Scholar 

  404. K. Alladi and C. Grinstead, On the decomposition of n! into prime powers, J. Number Theory, 9(1977) 452–458; MR 56 #11934.

    Google Scholar 

  405. Daniel Berend, On the parity of exponents in the factorization of n!, J. Number Theory, 64(1997) 13–19; MR 98g: 1 1019.

    Google Scholar 

  406. Chen Yong-Gao, On the parity of exponents in the standard factorization of n!, J. Number Theory, 100(2003) 326–331; MR 2004b: 11136.

    Google Scholar 

  407. Chen Yong-Gao and Zhu Yao-Chen, On the prime power factorization of n! J. Number Theory, 82(2000) 1–11; MR 2001c: 11027.

    Google Scholar 

  408. P. Erdös, Some problems in number theory, Computers in Number Theory, Academic Press, London and New York, 1971, 405–414.

    Google Scholar 

  409. Paul Erdös, S. W. Graham, Aleksandar Ivie and Carl Pomerance, On the number of divisors of n!, Analytic Number Theory, Vol. 1(Allerton Park IL, 1995) 337–355, Progr. Math., 138, Birkhäuser Boston, 1996; MR 97d: 1 1142.

    Google Scholar 

  410. Florian Luca and Pantelimon Stänicä, On the prime power factorization of n! J. Number Theory, 102 (2003) 298–305.

    Google Scholar 

  411. J. W. Sander, On the parity of exponents in the prime factorization of factorials, J. Number Theory, 90(2001) 316–328; MR 2002j: 11105.

    Google Scholar 

  412. Chris Caldwell, The Diophantine equation, J. Recreational Math., 26 (1994) 128–133.

    Google Scholar 

  413. Donald I. Cartwright and Joseph Kupka, When factorial quotients are integers, Austral. Math. Soc. Gaz., 29 (2002) 19–26.

    MathSciNet  MATH  Google Scholar 

  414. Earl Ecklund and Roger Eggleton, Prime factors of consecutive integers, Amer. Math. Monthly, 79(1972) 1082–1089.

    Google Scholar 

  415. E. Ecklund, R. Eggleton, P. Erdös and J. L. Selfridge, on the prime factorization of binomial coefficients, J. Austral. Math. Soc. Ser. A, 26(1978) 257–269; MR 80e:10009.

    Google Scholar 

  416. P. Erdös, Problems and results on number theoretic properties of consecutive integers and related questions, Congressus Numerantium XVI (Proc. 5th Manitoba Conf. Numer. Math. 1975 ), 25–44.

    Google Scholar 

  417. P. Erdös and R. L. Graham, On products of factorials, Bull. Inst. Math. Acad. Sinica, Taiwan, 4 (1976) 337–355.

    Google Scholar 

  418. T. N. Shorey, On a conjecture that a product of k consecutive positive integers is never equal to a product of mk consecutive positive integers except and related questions, Number Theory (Paris, 1992–1993), L.M.S. Lect. Notes 215(1995) 231–244; MR 96g: 1 1028.

    Google Scholar 

  419. Neil J. Calkin and Andrew Granville, On the number of co-prime-free sets, Number Theory (New York, 1991–1995), Springer, New York, 1996, 9–18; MR 97j:11006.

    Google Scholar 

  420. P. J. Cameron and P. Erdös, On the number of sets of integers with various properties, Number Theory (Banff, 1988), de Gruyter, Berlin, 1990, 61–79; MR 92g: 1 1010.

    Google Scholar 

  421. P. Erdös, On a problem in elementary number theory and a combinatorial problem, Math. Comput, (1964) 644–646; MR 30 #1087.

    Google Scholar 

  422. Kenneth Lebensold, A divisibility problem, Studies in Appl. Math, 56(197677) 291–294; MR 58 #21639.

    Google Scholar 

  423. Emma Lehmer, Solution to Problem 3820, Amer. Math. Monthly, 46 (1939) 240–241.

    MathSciNet  Google Scholar 

  424. P. T. Bateman and R. M. Stemmler, Waring’s problem for algebraic number fields and primes of the form (pr -1)/(pd -1), Illinois J. Math, 6(1962) 142–156; MR 25 #2059.

    Google Scholar 

  425. Ted Chinburg and Melvin Henriksen, Sums of kth powers in the ring of polynomials with integer coefficients, Bull. Amer. Math. Soc, 81(1975) 107–110; MR 51 #421; Acta Arith, 29(1976) 227–250; MR 53 #7942.

    Google Scholar 

  426. Karl Dilcherand Josh Knauer, On a conjecture of Feit and Thompson, (preprint, Williams60, Banff, May 2003 ).

    Google Scholar 

  427. Makowski and A. Schinzel, Sur l’équation indéterminée de R. Goormaghtigh, Mathesis, 68(1959) 128–142; MR 22 # 9472; 70 (1965) 94–96.

    Google Scholar 

  428. N. M. Stephens, On the Feit-Thompson conjecture, Math. Comput, 25(1971) 625; MR 45 #6738.

    Google Scholar 

  429. Neil J. Calkin and Andrew Granville, On the number of coprime-free sets, Number Theory (New York, 1991–1995) 9–18, Springer, New York, 1996; MR 97j: 1 1006.

    Google Scholar 

  430. S. L. G. Choi, The largest subset in [1, n] whose integers have pairwise 1.c.m. not exceeding n, Mathematika, 19(1972) 221–230; 47 #8461.

    Google Scholar 

  431. S. L. G. Choi, On sequences containing at most three pairwise coprime integers, Trans. Amer. Math. Soc, 183(1973) 437–440; 48 #6052.

    Google Scholar 

  432. P. Erdös, Extremal problems in number theory, Proc. Sympos. Pure Math. Amer. Math. Soc, 8(1965) 181–189; MR 30 #4740.

    Google Scholar 

  433. P. Erdös and J. L. Selfridge, Some problems on the prime factors of consecutive integers, Illinois J. Math., 11 (1967) 428–430.

    MathSciNet  MATH  Google Scholar 

  434. Schinzel, Unsolved problem 31, Elem. Math., 14 (1959) 82–83.

    MathSciNet  Google Scholar 

  435. Alfred Brauer, On a property of k consecutive integers, Bull. Amer. Math. Soc., 47(1941) 328–331; MR 2, 248.

    Google Scholar 

  436. Ronald J. Evans, On blocks of N consecutive integers, Amer. Math. Monthly 76 (1969) 48–49.

    MathSciNet  Google Scholar 

  437. Ronald J. Evans, On N consecutive integers in an arithmetic progression, Acta Sci. Math. Univ. Szeged, 33(1972) 295–296; MR 47 #8408.

    Google Scholar 

  438. Heiko Harborth, Eine Eigenschaft aufeinanderfolgender Zahlen, Arch. Math. (Basel) 21(1970) 50–51; MR 41 #6771.

    Google Scholar 

  439. Heiko Harborth, Sequenzen ganzer Zahlen, Zahlentheorie (Tagung, Math. Forschungsinst. Oberwolfach, 1970) 59–66; MR 51 #12775.

    Google Scholar 

  440. S. S. Pillai, On m consecutive integers I, Proc. Indian Acad. Sci. Sect. A, 11(1940) 6–12; MR 1, 199; II 11(1940) 73–80; MR 1, 291; III 13(1941) 530–533; MR 3, 66; IV Bull. Calcutta Math. Soc, 36(1944) 99–101; MR 6, 170.

    Google Scholar 

  441. D. H. Lehmer, On a problem of Stormer, Illinois J. Math, 8(1964) 57–79; MR 28 #2072.

    Google Scholar 

  442. P. Erdös and Jan Turk, Products of integers in short intervals, Acta Arith., 44(1984) 147–174; MR 86d: 1 1073.

    Google Scholar 

  443. Paul Erdös, Janice Malouf, John Selfridge and Esther Szekeres, Subsets of an interval whose product is a power, Paul Erds memorial collection. Discrete Math., 200(1999) 137–147; MR 2000e: 11017.

    Google Scholar 

  444. Jan-Hendrik Evertse and J. H. Silverman, Uniform bounds for the number of solutions to Y’2 = f (X) Math. Proc. Cambridge Philos. Soc, 100(1986) 237–248; MR 87k:11034.

    Google Scholar 

  445. L. Hajdu and Akos Pintér, Square product of three integers in short intervals, Math. Comput., 68(1999) 1299–1301; 99j: 1 1027.

    Google Scholar 

  446. Michel Langevin, Cas d’égalité pour le théorème de Mason et applications de la conjecture (abc), C.R. Acad. Sci. Paris Sér. I Math., 317(1993) 441–444; MR 94j: 1 1027.

    Google Scholar 

  447. T. N. Shorey, Perfect powers in products of integers from a block of consecutive integers, Acta Arith., 49(1987) 71–79; MR 88m: 1 1002.

    Google Scholar 

  448. T. N. Shorey and Yu. V. Nesterenko, Perfect powers in products of integers from a block of consecutive integers, II Acta Arith., 76(1996) 191–198; MR 97d: 1 1005.

    Google Scholar 

  449. For other problems and results on the divisors of binomial coefficients, see B33.

    Google Scholar 

  450. Emre Alkan, Variations on Wolstenholme’s theorem, Amer. Math. Monthly, 101 (1994) 1001–1004.

    MathSciNet  MATH  Google Scholar 

  451. D. F. Bailey, Two p3 variations of Lucas’s theorem, J. Number Theory, 35(1990) 208–215; MR 90f: 1 1008.

    Google Scholar 

  452. M. Bayat, A generalization of Wolstenholme’s theorem, Amer. Math. Monthly, 104(1997) 557–560 (but see Gessel reference).

    Google Scholar 

  453. Daniel Berend and Jorgen E. Harmse, On some arithmetical properties of middle binomial coefficients, Acta Arith., 84 (1998) 31–41.

    MathSciNet  MATH  Google Scholar 

  454. Cai Tian-Xin and Andrew Granville, On the residues of binomisl coefficients and their residues modulo prime powers. Acta Math. Sin. (Engl. Ser.), 18(2002) 277–288.

    Google Scholar 

  455. Chen Ke-Ying, Another equivalent form of Wolstenholme’s theorem and its generalization (Chinese), Math. Practice Theory, 1995 71–74; MR 97d: 1 1006.

    Google Scholar 

  456. Paul Erdös, C. B. Lacampagne and J. L. Selfridge, Estimates of the least prime factor of a binomial coefficient, Math. Comput., 61(1993) 215 224; MR 93k: 1 1013.

    Google Scholar 

  457. P. Erdös and J. L. Selfridge, Problem 6447, Amer. Math. Monthly 90(1983) 710; 92 (1985) 435–436.

    Google Scholar 

  458. P. Erdös and G. Szekeres, Some number theoretic problems on binomial coefficients, Austral. Math. Soc. Gaz., 5(1978) 97–99; MR 80e:10010 is uninformative.

    Google Scholar 

  459. Ira M. Gessel, Wolstenholme revisited, Amer. Math. Monthly, 105(1998) 657658; MR 99e:11009.

    Google Scholar 

  460. Andrew Granville, Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers, Organic mathematics (Burnaby BC, 1995), CMS Conf. Proc., 20(1997) 253–276; MR 99h: 1 1016.

    Google Scholar 

  461. Andrew Granville, On the scarcity of powerful binomial coefficients, Mathematika 46(1999) 397–410; MR 2002b:11029.

    Google Scholar 

  462. Andrew Granville and Olivier Ramaré, Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, Mathematika, 43(1996) 73107; MR 99m:11023.

    Google Scholar 

  463. Grytczuk, On a conjecture of Erdös on binomial coefficients, Studia Sci. Math. Hungar., 29(1994) 241–244.

    Google Scholar 

  464. Hong Shao-Fang, A generalization of Wolstenholme’s theorem, J. South China Normal Univ. Natur. Sci. Ed., 1995 24–28; MR 99f:11004.

    Google Scholar 

  465. Gerhard Larcher, On the number of odd binomial coefficients, Acta Math. Hungar., 71(1996 183–203.

    Google Scholar 

  466. Lee Dong-Hoonl and Hahn Sang-Geun, Some congruences for binomial coefficients, Class field theory-its centenary and prospect (Tokyo, 1998) 445–461

    Google Scholar 

  467. Adv. Stud. Pure Math. 30 Math. Soc. Japan, Tokyo, 2001; II Proc. Japan Acad. Ser. A Math. Sci, 76(2000) 104–107; MR 2002k:11024, 11025.

    Google Scholar 

  468. Grigori Kolesnik, Prime power divisors of multinomial and q-multinomial coefficients, J. Number Theory, 89(2001) 179–192; MR 2002i:11020.

    Google Scholar 

  469. Richard F. Lukes, Renate Scheidler and Hugh C. Williams, Further tabulation of the Erdös-Selfridge function, Math. Comput., 66(1997) 1709–1717; MR 98a: 1 1191.

    Google Scholar 

  470. Richard J. McIntosh, A generalization of a congruential property of Lucas, Amer. Math. Monthly, 99(1992) 231–238.

    Google Scholar 

  471. Richard J. McIntosh, On the converse of Wolstenholme’s theorem, Acta Arith., 71(1995) 381–389; MR 96h:11002.

    Google Scholar 

  472. Marko Razpet, On divisibility of binomial coefficients, Discrete Math., 135 (1994) 377–379; MR 95j:11014.

    Google Scholar 

  473. Harry D. Ruderman, Problem 714, Crux Math., 8(1982) 48; 9 (1983) 58.

    Google Scholar 

  474. J. W. Sander, On prime divisors of binomial coefficients. Bull. London Math. Soc.j 24(1992) no. 2 140–142; MR 93g:11019.

    Google Scholar 

  475. J. W. Sander, Prime power divisors of multinomial coefficients and Artin’s conjecture, J. Number Theory, 46(1994) 372–384; MR 95a:11018.

    Google Scholar 

  476. J. W. Sander, On the order of prime powers dividing (2n ), Acta Math., 174(1995) 85–118; MR 96b:11018.

    Google Scholar 

  477. J. W. Sander, A story of binomial coefficients and primes, Amer. Math. Monthly, 102(1995) 802–807; MR 96m:11015.

    Google Scholar 

  478. Renate Scheidler and Hugh C. Williams, A method of tabulating the number-theoretic function g(k), Math. Comput., 59(1992) 199, 251–257; MR 92k: 1 1146.

    Google Scholar 

  479. David Segal, Problem E435, partial solution by H.W. Brinkman, Amer. Math. Monthly, 48 (1941) 269–271.

    Google Scholar 

  480. P. Erdös, Problems and results in combinatorial analysis and combinatorial number theory, in Proc. 9th S.E. Conf. Combin. Graph Theory, Comput., Boca Raton, Congressus Numerantium XXI, Utilitas Math. Winnipeg, 1978, 29–40.

    Google Scholar 

  481. P. Erdös and C. Pomerance, Matching the natural numbers up to n with distinct multiples in another interval, Nederl. Akad. Wetensch. Proc. Ser. A, 83(= Indag. Math., 42)(1980) 147–161; MR 81i: 10053.

    Google Scholar 

  482. Paul Erdös and Carl Pomerance, An analogue of Grimm’s problem of finding distinct prime factors of consecutive integers, Utilitas Math., 24(1983) 45–46; MR 85b: 1 1072.

    Google Scholar 

  483. P. Erdös and J. L. Selfridge, Some problems on the prime factors of consecutive integers II, in Proc. Washington State Univ. Conf. Number Theory, Pullman, 1971, 13–21.

    Google Scholar 

  484. A. Grimm, A conjecture on consecutive composite numbers, Amer. Math. Monthly, 76 (1969) 1126–1128.

    MathSciNet  MATH  Google Scholar 

  485. Michel Langevin, Plus grand facteur premier d’entiers en progression arithmétique, Sém. Delange-Pisot-Poitou, 18(1976/77) Théorie des nombres: Fasc. 1, Exp. No. 3, Paris, 1977; MR 81a: 10011.

    Google Scholar 

  486. Carl Pomerance, Some number theoretic matching problems, in Proc. Number Theory Conf., Queen’s Univ., Kingston, 1979, 237–247.

    Google Scholar 

  487. Carl Pomerance and J. L. Selfridge, Proof of D.J. Newman’s coprime mapping conjecture, Mathematika, 27(1980) 69–83; MR 81i: 10008.

    Google Scholar 

  488. K. Ramachandra, T. N. Shorey and R. Tijdeman, On Grimm’s problem relating to factorization of a block of consecutive integers, J. reine angew. Math., 273 (1975) 109–124.

    MathSciNet  MATH  Google Scholar 

  489. E. F. Ecklund, On prime divisors of the binomial coefficient, Pacific J. Math., 29 (1969) 267–270.

    MathSciNet  MATH  Google Scholar 

  490. P. Erdös, A theorem of Sylvester and Schur, J. London Math. Soc., 9 (1934) 282–288.

    Google Scholar 

  491. Paul Erdös, A mélange of simply posed conjectures with frustratingly elusive solutions, Math. Mag., 52 (1979) 67–70.

    MathSciNet  MATH  Google Scholar 

  492. P. Erdös and R. L. Graham, On the prime factors of (z), Fibonacci Quart., 14 (1976) 348–352.

    MathSciNet  MATH  Google Scholar 

  493. P. Erdös, R. L. Graham, I. Z. Ruzsa and E. Straus, On the prime factors of (t’’), Math. Comput, 29(1975) 83–92. n

    Google Scholar 

  494. M. Faulkner, On a theorem of Sylvester and Schur, J. London Math. Soc., 41 (1966) 107–110.

    MathSciNet  MATH  Google Scholar 

  495. Henry W. Gould, Advanced Problem 5777*, Amer. Math. Monthly, 78 (1971) 202.

    MathSciNet  Google Scholar 

  496. Henry W. Gould and Paula Schlesinger, Extensions of the Hermite G.C.D. theorems for binomial coefficients, Fibonacci Quart., 33(1995) 386–391; MR 97g: 1 1015.

    Google Scholar 

  497. Hansraj Gupta, On the parity of (n + m — 1)!(n, m) /n!m!, Res. Bull. Panjab Univ. (N.S.), 20(1969) 571–575; MR 43 #3201.

    Google Scholar 

  498. L. Moser, Insolvability of Canad. Math. Bull, 6(1963)167–169.

    Google Scholar 

  499. P. A. Picon, Intégrité de certains produits-quotients de factorielles, Séminaire Lotharingien de Combinatoire (Saint-Nabor, 1992), Publ. Inst. Rech. Math. Av., 498, 109–113; MR 95j: 1 1013.

    Google Scholar 

  500. P. A. Picon, Conditions d’intégrité de certains coefficients hypergéometriques: généralisation d’un théorème de Landau, Discrete Math., 135(1994) 245–263; MR 96f: 1 1015.

    Google Scholar 

  501. J. W. Sander, Prime power divisors of (2, 7), J. Number Theory, 39(1991) 65–74; MR 92i: 1 1097.

    Google Scholar 

  502. J. W. Sander, Prime power divisors of binomial coefficients, J. reine angew. Math., 430(1992) 1–20; MR 93h:11021; reprise 437 (1993) 217–220.

    MathSciNet  MATH  Google Scholar 

  503. J. W. Sander, On primes not dividing binomial coefficients, Math. Proc. Cambridge Philos. Soc., 113(1993) 225–232; MR 93m: 1 1099.

    Google Scholar 

  504. J. W. Sander, An asymptotic formula for ath powers dividing binomial coefficients, Mathematika, 39(1992) 25–36; MR 93i: 1 1110.

    Google Scholar 

  505. J. W. Sander, On primes not dividing binomial coefficients, Math. Proc. Cambridge Philos. Soc., 113 (1993) 225–232.

    MathSciNet  MATH  Google Scholar 

  506. Sârközy, On divisors of binomial coefficients I, J. Number Theory, 20(1985) 70–80; MR 86c: 1 1002.

    Google Scholar 

  507. Schur, Einige Sätze über Primzahlen mit Anwendungen und Irreduzibilitätsfragen I, S.-B. Preuss, Akad. Wiss. Phys.-Math. Kl., 14 (1929) 125–136.

    Google Scholar 

  508. Sun Zhi-Wei, Products of binomial coefficients modulo p 2 Acta Arith., 97(2001) 87–98; MR 2002m: 11013.

    Google Scholar 

  509. Sylvester, On arithmetical series, Messenger of Math, 21(1892) 1–19,87— 120.

    Google Scholar 

  510. W. Utz, A conjecture of Erdös concerning consecutive integers, Amer. Math. Monthly, 68 (1961) 896–897.

    MathSciNet  MATH  Google Scholar 

  511. Velammal, Is the binomial coefficient (2’) squarefree? Hardy-Ramanujan J., 18(1995) 23–45; MR 95j: 1 1016.

    Google Scholar 

  512. E. Burbacka and J. Piekarczyk, P. 217, R. 1, Colloq. Math., 10 (1963) 365.

    Google Scholar 

  513. Schinzel, Sur un problème de P. Erdös, Colloq. Math, 5(1957–58) 198–204.

    Google Scholar 

  514. P. Erdös, How many pairs of products of consecutive integers have thesame prime factors? Amer. Math. Monthly 87 (1980) 391–392.

    MATH  Google Scholar 

  515. M. Aldaz, A. Bravo, S. Gutiérrez and A. Ubis, A theorem of D. J. Newman on Euler’s 0 function and arithmetic progressions. Amer. Math. Monthly, 108(2001) 364–367; MR 2002i: 11099.

    Google Scholar 

  516. Robert Baillie, Table of 5(n) = cb(n + 1), Math. Comput., 30(1976) 189–190. Roger C. Baker and Glyn Harman, Sparsely totient numbers, Ann. Fac. Sci. Toulouse Math.(6), 5(1996) 183–190; MR 97k: 1 1129.

    Google Scholar 

  517. David Ballew, Janell Case and Robert N. Higgins, Table of 0(n) = 0(n + 1), Math. Comput., 29 (1975) 329–330.

    Google Scholar 

  518. Jerzy Browkin and Andrzej Schinzel, On integers not of the form n - rb(n), Colloq. Math., 58(1995) 55–58; MR 95m: 1 1106.

    Google Scholar 

  519. Jôzsef Bukor and Jânos T. Toth, Estimation of the mean value of some arithmetical functions, Octogon Math. Mag., 3(1995) 31–32; MR 97a: 1 1013.

    Google Scholar 

  520. Cai Tian-Xin, On Euler’s equation 0(x) = k, Adv. Math. (China), 27 (1998) 224–226.

    Google Scholar 

  521. Thomas Dence and Carl Pomerance, Euler’s function in residue classes, Ramanujan J., 2(1998) 7–20; MR 99k: 1 1148.

    Google Scholar 

  522. Michael W. Ecker, Problem E-1, The AMATYC Review, 5(1983) 55; comment 6(1984)55.

    Google Scholar 

  523. N. El-Kassar, On the equations kcb(n) = cb(n + 1) and kc/r(n + 1) = 0(n), Number theory and related topics (Seoul 1998) 95–109, Yonsei Univ. Inst. Math. Sci., Seoul 2000; MR 2003g: 11001.

    Google Scholar 

  524. P. Erdös, Über die Zahlen der Form a•(n) — n und n — 0(n), Elem. Math., 28 (1973) 83–86.

    MATH  Google Scholar 

  525. P. Erdös and R. R. Hall, Distinct values of Euler’s 0-function, Mathematika, 23 (1976) 1–3.

    MathSciNet  MATH  Google Scholar 

  526. S. W. Graham, Jeffrey J. Holt and Carl Pomerance, On the solutions to 0(n) = 0(n + k). Number theory in progress, Vol. 2 (Zakopane-Koicielisko, 1997), 867882, de Gruyter, Berlin, 1999; MR 2000h: 11102.

    Google Scholar 

  527. Jeffrey J. Holt, The minimal number of solutions to 0(n) =.rb(n + k), Math. Comput., 72(2003) 2059–2061; MR 2004c:11171.

    Google Scholar 

  528. Patricia Jones, On the equation 0(x) + 0(k) = 0(x + k), Fibonacci Quart., 28(1990) 162–165; MR 91e:11008.

    Google Scholar 

  529. M. Lal and P. Gillard, On the equation 0(n) = 0(n + k), Math. Comput., 26(1972) 579–582.

    Google Scholar 

  530. Antanas Laurinéikas, On some problems related to the Euler 0-function, Paul Erdôs and his mathematics (Budapest, 1999 ) 152–154, Janos Bolyai Math. Soc., Budapest 1999.

    Google Scholar 

  531. Florian Luca and Carl Pomerance, On some problems of Makowski-Schinzel and Erdös concerning the arithmetic functions 0 and a, Colloq. Math. 92(2002) 111–130; MR 2003e: 11105.

    Google Scholar 

  532. Helmut Maier and Carl Pomerance, On the number of distinct values of Euler’s 0-function, Acta Arith., 49(1988) 263–275.

    Google Scholar 

  533. Andrzej Makowski, On the equation ç(n+k) = 20(n), Elem. Math., 29 (1974) 13.

    Google Scholar 

  534. Greg Martin, The smallest solution of 0(30n + 1) 0(30n) is…, Amer. Math. Monthly, 106(1999) 449–452; MR 2000d:11011.

    Google Scholar 

  535. Kathryn Miller, UMT 25, Math. Comput., 27 (1973) 447–448.

    Google Scholar 

  536. Donald J. Newman, Euler’s 0-function on arithmetic progressions, Amer. Math. Monthly, 104(1997) 256–257; MR 97m:11010.

    Google Scholar 

  537. Laurent l iu Panaitopol, On some properties concerning the function a(n) = n — c/o(n), Bull. Greek Math. Soc., 45(2001) 71–77; MR 2003k:11008.

    Google Scholar 

  538. Laurentiu Panaitopol, On the equation n — 0(n) = m, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 44(92)(2001) 97–100.

    Google Scholar 

  539. Jan-Christoph Puchta, On the distribution of totients, Fibonacci Quart., 40(2002) 68–70.

    Google Scholar 

  540. HermanJ. J. te Riele, On the size of solutions of the inequality, Public-key cryptography and computational number theory (Warsaw, 2000) 249–255, de Gruyter, Berlin, 2001; MR 2003c: 11007.

    Google Scholar 

  541. Schinzel, Sur l’équation 0(x + k) = 0(x), Acta Arith., 4(1958) 181–184; MR 21 #5597.

    Google Scholar 

  542. Schinzel and A. Wakulicz, Sur l’équation 0(x + k) = 0(x) II, Acta Arith., 5(1959) 425–426; MR 23 #A831.

    Google Scholar 

  543. W. Sierpiriski, Sur un propriété de la fonction ¢(n), Publ. Math. Debrecen, 4 (1956) 184–185.

    Google Scholar 

  544. Mladen Vassilev-Missana, The numbers which cannot be values of Euler’s function q5, Notes Number Theory Discrete Math., 2(1996) 41–48; MR 97m:11012.

    Google Scholar 

  545. Charles R. Wall, Density bounds for Euler’s function, Math. Comput., 26 (1972) 779–783 with microfiche supplement; MR 48 #6043.

    Google Scholar 

  546. Masataka Yorinaga, Numerical investigation of some equations involving Euler’s 0-function, Math. J. Okayama Univ., 20 (1978) 51–58.

    MathSciNet  MATH  Google Scholar 

  547. Zhang Ming-Zhi, On nontotients, J. Number Theory, 43(1993) 168–173; MR 94c:11004.

    Google Scholar 

  548. Ronald Alter, Can W(n) properly divide n — 1? Amer. Math. Monthly 80 (1973) 192–193.

    MathSciNet  Google Scholar 

  549. L. Cohen and P. Hagis, On the number of prime factors of n if 0(n)In–1, Nieuw Arch. Wisk. (3), 28 (1980) 177–185.

    MathSciNet  MATH  Google Scholar 

  550. G. L. Cohen Si S. L. Segal, A note concerning those n for which W(n) + 1 divides n, Fibonacci Quart, 27(1989)285–286.

    Google Scholar 

  551. Aleksander Grytczuk and Marek Wdjtowicz, On a Lehmer problem concerning Euler’s totient function, Proc. Japan Acad. Ser. A Math. Sci. 79 (2003) 136–138.

    MathSciNet  MATH  Google Scholar 

  552. Masao Kishore, On the equation kç(M) = M–1, Nieuw Arch. Wisk. (3), 25(1977) 48–53; see also Notices Amer. Math. Soc., 22 (1975) A501–502.

    Google Scholar 

  553. H. Lehmer, On Euler’s totient function, Bull. Amer. Math. Soc., 38 (1932) 745–751.

    MathSciNet  Google Scholar 

  554. Lieuwens, Do there exist composite numbers for which kç(M) = M — 1 holds? Nieuw Arch. Wisk. (3), 18(1970) 165–169; MR 42 #1750.

    Google Scholar 

  555. R. J. Miech, An asymptotic property of the Euler function, Pacific J. Math, 19(1966) 95–107; MR 34 #2541.

    Google Scholar 

  556. Carl Pomerance, On composite n for which ç(n)In- 1, Acta Arith, 28(1976) 387–389; II

    Google Scholar 

  557. Pacific J. Math, 69(1977) 177–186; MR 55 #7901; see also Notices Amer. Math. Soc, 22(1975) A542.

    Google Scholar 

  558. J6zsef Sândor, On the arithmetical functions ak (n) and qk (n), Math. Student, 58(1990) 49–54; MR 91h: 1 1005.

    Google Scholar 

  559. Fred. Schuh, Can n–1 be divisible by q(n) when n is composite? Mathematica, Zutphen B, 12 (1944) 102–107.

    Google Scholar 

  560. V. Siva Rama Prasad Si M. Rangamma, On composite n satisfying a problem of Lehmer, Indian J. Pure Appl. Math., 16(1985) 1244–1248; MR 87g: 1 1017.

    Google Scholar 

  561. V. Siva Rama Prasad and M. Rangamma, On composite n for which (n) In-1, Nieuw Arch. Wisk. (4), 5(1987) 77–81; MR 88k: 1 1008.

    Google Scholar 

  562. M. V. Subbarao, On two congruences for primality, Pacific J. Math, 52(1974) 261–268; MR 50 #2049.

    Google Scholar 

  563. M. V. Subbarao, On composite n satisfying W(n) - 1 mod n,Abstract 88211–60 Abstracts Amer. Math. Soc., 14 (1993) 418.

    Google Scholar 

  564. M. V. Subbarao, The Lehmer problem on the Euler totient: a Pandora’s box of unsolvable problems, Number theory and discrete mathematics (Chandigarh, 2000 ) 179–187.

    Google Scholar 

  565. David W. Wall, Conditions for (/)(N) to properly divide N — 1, A Collection of Manuscripts Related to the Fibonacci Sequence, 18th Anniv. Vol., Fibonacci Assoc., 205–208.

    Google Scholar 

  566. Shan Zun, On composite n for which 0(n)In - 1, J. China Univ. Sci. Tech., 15(1985) 109–112; MR 87h: 1 1007.

    Google Scholar 

  567. Jean-Marie De Koninck, Problem 10966(b), Amer. Math. Monthly, 109 (2002) 759.

    Google Scholar 

  568. Le Mao-Hua, A note on primes p with a(pm) = zn, Colloq. Math., 62 (1991) 193–196.

    Google Scholar 

  569. R. D. Carmichael, Note on Euler’s 0-function, Bull. Amer. Math. Soc., 28 (1922) 109–110; and see 13(1907) 241–243.

    Google Scholar 

  570. P. Erdös, On the normal number of prime factors of p — 1 and some other related problems concerning Euler’s 0-function, Quart. J. Math. Oxford Ser., 6 (1935) 205–213.

    Google Scholar 

  571. P. Erdös, Some remarks on Euler’s 0-function and some related problems, Bull. Amer. Math. Soc., 51(1945) 540–544.

    Google Scholar 

  572. P. Erdös, Some remarks on Euler’s 0-function, Acta Arith., 4(1958) 10–19; MR 22#1539.

    Google Scholar 

  573. Kevin Ford, The distribution of totients, Ramanujan J., 2(1998) 67–151; MR 99m:11106.

    Google Scholar 

  574. Kevin Ford, The distribution of totients, Electron. Res. Announc. Amer. Math. Soc., 4(1998) 27–34; MR 99f:11125.

    Google Scholar 

  575. Lorraine L. Foster, Solution to problem E3361, Amer. Math. Monthly 98 (1991) 443.

    MathSciNet  Google Scholar 

  576. Peter Hagis, On Carmichael’s conjecture concerning the Euler phi function (Italian summary), Boll. Un. Mat. Ital. (6), A5(1986) 409–412.

    Google Scholar 

  577. Hooley, On the greatest prime factor of p + a, Mathematika, 20 (1973) 135–143.

    MathSciNet  MATH  Google Scholar 

  578. Henryk Iwaniec, On the Brun-Tichmarsh theorem and related questions, Proc. Queen’s Number Theory Conf., Kingston, Ont. 1979, Queen’s Papers Pure Appl. Math., 54(1980) 67–78; Zbl. 446. 10036.

    Google Scholar 

  579. V. L. Klee, On a conjecture of Carmichael, Bull. Amer. Math. Soc., 53(1947) 1183–1186; MR 9, 269.

    Google Scholar 

  580. P. Masai and A. Valette, A lower bound for a counterexample to Carmichael’s

    Google Scholar 

  581. conjecture, Boll. Un. Mat. Ital. A (6), 1 (1982) 313–316; MR 84b:10008.

    Google Scholar 

  582. Carl Pomerance, On Carmichael’s conjecture, Proc. Amer. Math. Soc., 43 (1974) 297–298.

    MathSciNet  MATH  Google Scholar 

  583. Carl Pomerance, Popular values of Euler’s function, Mathematika, 27 (1980) 84–89; MR 81k: 10076.

    Google Scholar 

  584. Aaron Schlafly and Stan Wagon, Carmichael’s conjecture on the Euler function is valid below 1010’000’0w, Math. Comput., 63(1994) 415–419; MR 94i: 1 1008.

    Google Scholar 

  585. M. V. Subbarao and L.-W. Yip, Carmichael’s conjecture and some analogues, in Théorie des Nombres (Québec, 1987), de Gruyter, Berlin—New York, 1989, 928–941 (and see Canad. Math. Bull., 34 (1991) 401–404.

    MathSciNet  MATH  Google Scholar 

  586. Alain Valette, Fonction d’Euler et conjecture de Carmichael, Math. et Pédag., Bruxelles, 32 (1981) 13–18.

    Google Scholar 

  587. Stan Wagon, Carmichael’s `Empirical Theorem’, Math. Intelligencer, 8(1986) 61–63; MR 87d: 1 1012.

    Google Scholar 

  588. R. Wooldridge, Values taken many times by Euler’s phi-function, Proc. Amer. Math. Soc., 76(1979) 229–234; MR 80g: 10008.

    Google Scholar 

  589. P. Erdös, On the integers relatively prime to n and on a number-theoretic function considered by Jacobsthal, Math. Scand, 10(1962) 163–170; MR 26 #3651.

    Google Scholar 

  590. R. R. Hall and P. Shiu, The distribution of totatives, Cand. Math. Bull., 45(2002); MR 2003a: 11005.

    Google Scholar 

  591. Hooley, On the difference of consecutive numbers prime to n, Acta Arith, 8(1962/63) 343–347; MR 27 #5741.

    Google Scholar 

  592. L. Montgomery and R. C. Vaughan, On the distribution of reduced residues, Ann. of Math. (2), 123(1986) 311–333; MR 87g: 1 1119.

    Google Scholar 

  593. R. C. Vaughan, Some applications of Montgomery’s sieve, J. Number Theory, 5 (1973) 64–79.

    MathSciNet  MATH  Google Scholar 

  594. R. C. Vaughan, On the order of magnitude of Jacobsthal’s function, Proc. Edinburgh Math. Soc.(2), 20(1976/77) 329–331; MR 56 #11937.

    Google Scholar 

  595. Krassimir T. Atanassov, New integer functions, related to 0 and a functions, Bull. Number Theory Related Topics, 11(1987) 3–26; MR 90j:11007.

    Google Scholar 

  596. P. A. Catlin, Concerning the iterated 0-function, Amer. Math. Monthly, 77(1970) 60–61.

    Google Scholar 

  597. P. Erdös, A. Granville, C. Pomerance and C. Spiro, On the normal behavior of the iterates of some arithmetic functions, in Berndt, Diamond, Halberstam and Hildebrand (editors) Analytic Number Theory, Proc. Conf. in honor P.T. Bateman, Allerton Park, 1989, Birkhäuser, Boston, 1990, 165–204; MR 92a: 1 1113.

    Google Scholar 

  598. P. Erdös, Some remarks on the iterates of the and a functions, Colloq. Math, 17(1967) 195–202; MR 36 #2573.

    Google Scholar 

  599. Paul Erdös and R. R. Hall, Euler’s 0-function and its iterates, Mathematika, 24(1977) 173–177; MR 57 #12356.

    Google Scholar 

  600. Miriam Hausman, The solution of a special arithmetic equation, Canad. Math. Bull., 25(1982) 114–117.

    Google Scholar 

  601. Douglas E. Iannucci, Deng Moujie and Graeme L. Cohen, On perfect totient numbers, preprint, 2003.

    Google Scholar 

  602. H. Maier, On the third iterates of the 0- and a-functions, Colloq. Math., 49(1984) 123–130; MR 86d:11006.

    Google Scholar 

  603. W. H. Mills, Iteration of the 0-function, Amer. Math. Monthly 50(1943) 547549; MR 5, 90.

    Google Scholar 

  604. A. Nicol, Some diophantine equations involving arithmetic functions, J. Math. Anal. Appl., 15(1966) 154–161.

    Google Scholar 

  605. Ivan Niven, The iteration of certain arithmetic functions, Canad. J. Math., 2(1950) 406–408; MR 12, 318.

    Google Scholar 

  606. S. S. Pillai, On a function connected with 0(n), Bull. Amer. Math. Soc., 35(1929) 837–841.

    Google Scholar 

  607. Carl Pomerance, On the composition of the arithmetic functions a and 0, Colloq. Math., 58(1989) 11–15; MR 91c:11003.

    Google Scholar 

  608. Harold N. Shapiro, An arithmetic function arising from the 0-function, Amer. Math. Monthly 50(1943) 18–30; MR 4, 188.

    Google Scholar 

  609. Charles R. Wall, Unbounded sequences of Euler-Dedekind means, Amer. Math. Monthly 92(1985) 587.

    Google Scholar 

  610. Richard Warlimont, On the iterates of Euler’s function, Arch. Math. (Basel), 76(2001) 345–349; MR 2002k:11167.

    Google Scholar 

  611. U. Balakrishnan, Some remarks on a(ç(n)), Fibonacci Quart., 32(1994) 293296; MR 95j:11091.

    Google Scholar 

  612. Cao Fen-Jin, The composite number-theoretic function a(0(n)) and its relation to n, Fujian Shifan Daxue Xuebao Ziran Kexue Ban, 10(1994) 31–37; MR 96c: 1 1008.

    Google Scholar 

  613. Graeme L. Cohem, On a conjecture of Makowski and Schinzel, Colloq. Math., 74(1997) 1–8; MR 98e:11006.

    Google Scholar 

  614. P. Erdds, Problem P. 294, Canad. Math. Bull., 23 (1980) 505.

    Google Scholar 

  615. Kevin Ford and Sergei Konyagin, On two conjectures of Sierpinski concerning the arithmetic functions a and 0, Number Theory in Progress, Vol. 2 (ZakopaneKoicielisko, 1997) 795–803, de Gruyter, Berlin, 1999; MR 2000d: 11120.

    Google Scholar 

  616. Kevin Ford, Sergei Konyagin and Carl Pomerance, Residue classes free of values of Euler’s function, Number Theory in Progress, Vol. 2 (Zakopane-Koicielisko, 1997) 805–812, de Gruyter, Berlin, 1999; MR 2000f: 11120.

    Google Scholar 

  617. Solomon W. Golomb, Equality among number–theoretic functions, preprint, Oct 1992; Abstract 882–11–16, Abstracts Amer. Math. Soc., 14 (1993) 415 – 416.

    Google Scholar 

  618. Grytczuk, F. Luca and M. Wôjtowicz, A conjecture of Erdös concerning inequalities for the Euler totient function, Publ. Math. Debrecen, 59(2001) 9–16; MR 2002f: 11005.

    Google Scholar 

  619. Grytczuk, F. Luca and M. Wôjtowicz, Some results on a(0(n)), Indian J. Math., 43(2001) 263–275; MR 2002k:11166.

    Google Scholar 

  620. Richard K. Guy, Divisors and desires, Amer. Math. Monthly, 104(1997) 359360.

    Google Scholar 

  621. Pentti Haukkanen, On an inequality for a(n)0(n), Octogon Math. Mag., 4(1996) 3–5.

    Google Scholar 

  622. Lin Da-Zheng and Zhang Ming-Zhi, On the divisibility relation ni(4.(n)+a(n)), Sichuan Daxue Xuebao, 34(1997) 121–123; MR 98d:11010.

    Google Scholar 

  623. Makowski and A. Schinzel, On the functions 0(n) and a(n), Colloq. Math, 13(1964–65) 95–99; MR 30 #3870.

    Google Scholar 

  624. Carl Pomerance, On the composition of the arithmetic functions a and 0, Colloq. Math., 58(1989) 11–15; MR 91c:11003.

    Google Scholar 

  625. Jôzsef Sândor, On Dedekind’s arithmetical function, Seminarul de Teoria Structurilor, Univ. Timisoara, 51(1988) 1–15.

    Google Scholar 

  626. Jôzsef Sândor, On the composition of some arithmetic functions, Studia Univ. Babeq-Bolyai Math., 34(1989) 7–14; MR 91i:11008.

    Google Scholar 

  627. Jôzsef Sândor and R. Sivaramakrishnan, The many facets of Euler’s totient. III. An assortment of miscellaneous topics, Nieuw Arch. Wisk., 11(1993) 97–130; MR 94i: 1 1007.

    Google Scholar 

  628. Robert C. Vaughan and Kevin L. Weis, On sigma-phi numbers, Mathematika, 48(2001) 169–189 (2003).

    Google Scholar 

  629. Zhang Ming-Zhi, A divisibility problem (Chinese), Sichuan Daxue Xuebao, 32(1995) 240–242; MR 97g: 1 1003.

    Google Scholar 

  630. Carlitz, A note on the left factorial function, Math. Balkanika, 5 (1975) 37–42.

    Google Scholar 

  631. Goran Gogié, Kurepa’s hypothesis on the left factorial (Serbian), Zb. Rad. Mat. Inst. Beograd. (N.S.) 5 (13) (1993) 41–45.

    MathSciNet  Google Scholar 

  632. Aleksandar Ivié and Zarko Mijajlovié, On Kurepa’s problems in number theory, Duro Kurepa memorial volume, Publ. Inst. Math. (Beograd) (N.S.) 57(71)(1995) 19–28; MR 97a: 1 1007.

    Google Scholar 

  633. Winfried Kohnen, A remark on the left-factorial hypothesis, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 9(1998) 51–53; MR 99m: 1 1005.

    Google Scholar 

  634. D uro Kurepa, On some new left factorial propositions, Math. Balkanika, 4(1974) 383–386; MR 58 #10716.

    Google Scholar 

  635. Mijajlovié, On some formulas involving !n and the verification of the !n-hypothesis by use of computers, Publ. Inst. Math. (Beograd) (N.S.) 47(61)(1990) 24–32; MR 92d: 1 1134.

    Google Scholar 

  636. Alexandar Petojevié, On Kurepa’s hypothesis for the left factorial, Filomat No. 12, part 1 (1998) 29–37.

    Google Scholar 

  637. Zoran Sami, On generalization of functions n! and !n, Publ. Inst. Math. (Beograd)(N.S.) 60(74)(1996) 5–14; MR 98a: 1 1006.

    Google Scholar 

  638. Zoran Sami, A sequence un,, and Kurepa’s hypothesis on left factorial, Sympos. dedicated to memory of Duro Kurepa, Belgrade 1996, Sci. Rev. Ser. Sci. Eng., 19–20(1996) 105–113; MR 98b: 1 1016.

    Google Scholar 

  639. V. S. Vladimirov, Left factorials, Bernoulli numbers, and the Kurepa conjecture, Publ. Inst. Math. Beograd (N.S.), 72 (86) (2002) 11–22.

    MathSciNet  Google Scholar 

  640. V. I. Arnold, Bernoulli-Euler updown numbers associated with function singularities, their combinatorics and arithmetics, Duke Math. J., 63(1991) 537–555; MR 93b: 58020.

    Google Scholar 

  641. V. I. Arnold, Snake calculus and the combinatorics of the Bernoulli, Euler and Springer numbers of Coxeter groups, Uspekhi Mat. Nauk, 47(1992) 3–45; transl. in Russian Math. Surveys, 47(1992) 1–51; MR 93h: 20042.

    Google Scholar 

  642. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Annals of Math. 39(1938) 350–360; Zbl. 19, 5.

    Google Scholar 

  643. Barry J. Powell, Advanced problem 6325, Amer. Math. Monthly 87 (1980) 826.

    MathSciNet  Google Scholar 

  644. P. Erdös and Carl Pomerance, On the largest prime factors of n and n + 1, Aequationes Math, 17(1978) 311–321; MR 58 #476.

    Google Scholar 

  645. Mabkhout, Minoration de P(x 4 + 1), Rend. Sem. Fac. Sci. Univ. Cagliari, 63(1993) 135–148; MR 96e: 1 1039.

    Google Scholar 

  646. Schinzel, On primitive prime factors of an–b, Proc. Cambridge Philos. Soc., 58 (1962) 555–562.

    Google Scholar 

  647. Sun Qi and Zhang Ming-Zhi, Pairs where 2a — 2b divides na — nb for all n, Proc. Amer. Math. Soc., 93(1985) 218–220; MR 86c: 1 1004.

    Google Scholar 

  648. Marian Vâjâitu and Alexandru Zaharescu, A finiteness theorem for a class of exponential congruences, Proc. Amer. Math. Soc, 127(1999) 2225–2232; MR 99j:11003.

    Google Scholar 

  649. David Borwein and Jonathan M. Borwein, On an intriguing integral and some series related to ((4), Proc. Amer. Math. Soc, 123(1995) 1191–1198; MR 95e:11137.

    Google Scholar 

  650. Patrick Costello, A new largest Smith number, Fibonacci Quart., 40 (2002) 369–371.

    MathSciNet  MATH  Google Scholar 

  651. Patrick Costello and Kathy Lewis, Lots of Smiths, Math. Mag, 75(2002) 223226.

    Google Scholar 

  652. Stephen K. Doig, Math Whiz makes digital discovery, The Miami Herald, 1986–08–22; Coll. Math. J., 18 (1987) 80.

    Google Scholar 

  653. Editorial, Smith numbers ring a bell? Fort Lauderdale Sun Sentinel, 86–09–16, p. 8A.

    Google Scholar 

  654. Editorial, Start with 4,937,775, New York Times, 86–09–02.

    Google Scholar 

  655. Kathy Lewis, Smith numbers: an infinite subset of N, M.S. thesis, Eastern Kentucky Univ., 1994.

    Google Scholar 

  656. Wayne L. McDaniel, The existence of infinitely many k-Smith numbers, Fibonacci Quart., 25 (1987) 76–80.

    MathSciNet  MATH  Google Scholar 

  657. Wayne L. McDaniel, Powerful k-Smith numbers, Fibonacci Quart., 25 (1987) 225–228.

    MathSciNet  MATH  Google Scholar 

  658. Wayne L. McDaniel, Palindromic Smith numbers, J. Recreational Math., 19 (1987) 34–37.

    MATH  Google Scholar 

  659. Wayne L. McDaniel, Difference of the digital sums of an integer base b and its prime factors, J. Number Theory, 31(1989) 91–98; MR 90e: 1 1021.

    Google Scholar 

  660. Wayne L. McDaniel and Samuel Yates, The sum of digits function and its application to a generalization of the Smith number problem, Nieuw Arch. Wisk.(4), 7 (1989) 39–51.

    MathSciNet  MATH  Google Scholar 

  661. Sham Oltikar and Keith Wayland, Construction of Smith numbers, Math. Mag., 56 (1983) 36–37.

    MathSciNet  MATH  Google Scholar 

  662. Ivars Peterson, In search of special Smiths, Science News, 86–08–16, p. 105. Michael Smith, Cousins of Smith numbers: Monica and Suzanne sets, Fibonacci Quart., 34(1996) 102–104; MR 97a: 1 1020.

    Google Scholar 

  663. Wilansky, Smith numbers, Two-Year Coll. Math. J., 13 (1982) 21.

    Google Scholar 

  664. Brad Wilson, For b 3 there exist infinitely many base b k-Smith numbers, Rocky Mountain J. Math., 29(1999) 1531–1535; MR 2000k: 11014.

    Google Scholar 

  665. Samuel Yates, Special sets of Smith numbers, Math. Mag., 59(1986) 293–296. Samuel Yates, Smith numbers congruent to 4 (mod 9), J. Recreational Math., 19 (1987) 139–141.

    MATH  Google Scholar 

  666. Samuel Yates, How odd the Smiths are, J. Recreational Math, 19(1987) 168174.

    Google Scholar 

  667. Samuel Yates, Digital sum sets, in R. A. Mollin (ed.), Number Theory, Proc. 1st Canad. Number Theory Assoc. Conf., Banff, 1988, de Gruyter, New York, 1990, pp. 627–634; MR 92c: 11008.

    Google Scholar 

  668. Samuel Yates, Tracking titanics, in R. K. Guy and R. E. Woodrow (eds.), The Lighter Side of Mathematics, Proc. Strens Mem. Conf., Calgary, 1986, Spectrum Series, Math. Assoc. of America, Washington DC, 1994.

    Google Scholar 

  669. P. Erdös and C. Pomerance, On the largest prime factors of n and n + 1, Aequationes Math, 17(1978) 311–321; MR 58 #476.

    Google Scholar 

  670. Nelson, D. E. Penney and C. Pomerance, “714 and 715”, J. Recreational Math., 7 (1994) 87–89.

    Google Scholar 

  671. Pomerance, Ruth-Aaron numbers revisited, Paul Erdôs and his mathematics, I (Budapest 1999 ) 567–579, Bolyai Soc. Math. Stud., 11, Janos Bolyai Math. Soc., Budapest, 2002.

    Google Scholar 

  672. David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin 1986, pp. 159–160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guy, R.K. (2004). Divisibility. In: Unsolved Problems in Number Theory. Problem Books in Mathematics, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-26677-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-26677-0_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1928-1

  • Online ISBN: 978-0-387-26677-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics