Skip to main content

The Polygenic Model

  • Chapter
Applied Probability

Part of the book series: Springer Texts in Statistics ((STS))

  • 1060 Accesses

Abstract

The standard polygenic model of biometrical genetics can be motivated by considering a quantitative trait determined by a large number of loci acting independently and additively [12]. In a pedigree of m people, let X sukini be the contribution of locus k to person i. The trait value X i = Σ kX sukini for person i forms part of a vector X = (X 1,...,X m)t of trait values for the pedigree. If the effects of the various loci are comparable, then the central limit theorem implies that X follows an approximate multivariate normal distribution. (See the references [19, 21] and Appendix B.) Furthermore, independence of the various loci implies Cov(X 1, X j) = Σ k Cov(X sukini , X sukink . From our covariance decomposition for two non-inbred relatives at a single locus, it follows that Cov(X 1, X j) = 2Φijσ su2inα + Δ7ijσ su2ind , where σ su2inα and σ su2ind are the additive and dominance genetic variances summed over all participating loci. These covariances can be expressed collectively in matrix notation as Var(X) = 2σ su2inα Φ + σ su2ind Δ7. Again it is convenient to assume that X has mean E(X) = 0. Although it is an article of faith that the assumptions necessary for the central limit theorem actually hold for any given trait, one can check multivariate normality empirically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8.12 References

  1. Amos CI (1994) Robust variance-components approach for assessing genetic linkage in pedigrees. Amer J Hum Genet 54:535–543

    Google Scholar 

  2. Barnholtz JS, de Andrade M, Page GP, King TM, Peterson LE, Amos CI (1999) Assessing linkage of monoamine oxidase B in a genome-wide scan using a variance components approach. Genet Epidemiol 17(Supplement 1):S49–S54

    Google Scholar 

  3. Blangero J, Almasy L (1997) Multipoint oligogenic linkage analysis of quantitative traits. Genet Epidemiol 14:959–964

    Article  Google Scholar 

  4. Boerwinkle E, Chakraborty R, Sing CF (1986) The use of measured genotype information in the analysis of quantitative phenotypes in man. I. Models and analytical methods. Ann Hum Genet 50:181–194

    Article  MATH  Google Scholar 

  5. Cannings C, Thompson EA, Skolnick MH (1978) Probability functions on complex pedigrees. Adv Appl Prob 10:26–61

    Article  MATH  MathSciNet  Google Scholar 

  6. Daiger SP, Miller M, Chakraborty R (1984) Heritability of quantitative variation at the group-specific component (Gc) locus. Amer J Hum Genet 36:663–676

    Google Scholar 

  7. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood estimation with incomplete data via the EM algorithm (with discussion). J Roy Stat Soc B 39:1–38

    MATH  MathSciNet  Google Scholar 

  8. Elston RC, Stewart J (1971) A general model for the genetic analysis of pedigree data. Hum Hered 21:523–542

    Article  Google Scholar 

  9. Falconer DS (1965) The inheritance of liability to certain diseases, estimated from the incidences among relatives. Ann Hum Genet 29:51–79

    Article  Google Scholar 

  10. Falconer DS (1967) The inheritance of liability to diseases with variable age of onset, with particular reference to diabetes mellitus. Ann Hum Genet 31:1–20

    Google Scholar 

  11. Fernando RL, Stricker C, Elston RC (1994) The finite polygenic mixed model: An alternative formulation for the mixed model of inheritance. Theor Appl Genet 88:573–580

    Article  Google Scholar 

  12. [12] Fisher RA (1918) The correlation between relatives on the supposition of Mendelian inheritance. Trans Roy Soc Edinburgh 52:399–433

    Google Scholar 

  13. Goldgar DE (1990) Multipoint analysis of human quantitative genetic variation. Amer J Hum Genet 47:957–967

    Google Scholar 

  14. Holt SB (1954) Genetics of dermal ridges: Bilateral asymmetry in finger ridge-counts. Ann Eugenics 18:211–231

    Google Scholar 

  15. Hopper JL, Mathews JD (1982) Extensions to multivariate normal models for pedigree analysis. Ann Hum Genet 46:373–383

    Article  MATH  Google Scholar 

  16. Horn RA, Johnson CR (1991) Topics in Matrix Analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  17. Jennrich RI, Sampson PF (1976) Newton-Raphson and related algorithms for maximum likelihood variance component estimation. Technometrics 18:11–17

    Article  MATH  MathSciNet  Google Scholar 

  18. Juo S-HH, Pugh EW, Baffoe-Bonnie A, Kingman A, Sorant AJM, Klein AP, O’Neill J, Mathias RA, Wilson AF, Bailey-Wilson JE (1999) Possible linkage of alcoholism, monoamine oxidase activity and P300 amplitude to markers on chromosome 12q24. Genet Epidemiol 17(Supplement 1):S193–S198

    Google Scholar 

  19. Lange K (1978) Central limit theorems for pedigrees. J Math Biol 6:59–66

    Article  MATH  MathSciNet  Google Scholar 

  20. Lange K (1997) An approximate model of polygenic inheritance. Genetics 147:1423–1430

    Google Scholar 

  21. Lange K, Boehnke M (1983) Extensions to pedigree analysis. IV. Co-variance component models for multivariate traits. Amer J Med Genet 14:513–524

    Article  Google Scholar 

  22. Lange K, Boehnke M, Weeks D (1987) Programs for pedigree analysis: MENDEL, FISHER, and dGENE. Genet Epidemiology 5:473–476

    Google Scholar 

  23. Lange K, Westlake J, Spence MA (1976) Extensions to pedigree analysis. III. Variance components by the scoring method. Ann Hum Genet 39:484–491

    Article  Google Scholar 

  24. Lawley DN, Maxwell AE (1971) Factor Analysis as a Statistical Method, 2nd ed. Butterworth, London

    MATH  Google Scholar 

  25. Lunetta KL, Wilcox M, Smoller J, Neuberg D (1999) Exploring linkage for alcoholism using affection status and quantitative event related potentials phenotypes. Genet Epidemiol 17(Supplement 1):S241–S246

    Google Scholar 

  26. MacCluer JW, Blangero J, Dyer TD, Speer MC (1997) GAW10: Simulated family data for a common oligogenic disease with quantitative risk factors. Genet Epidemiology 14: 737–742

    Article  Google Scholar 

  27. Morton NE, MacLean CJ (1974) Analysis of family resemblance. III. Complex segregation analysis of quantitative traits. Amer J Hum Genet 26:489–503

    Google Scholar 

  28. Ott J (1979) Maximum likelihood estimation by counting methods under polygenic and mixed models in human pedigrees. Amer J Hum Genet 31:161–175

    Google Scholar 

  29. Peressini AL, Sullivan FE, Uhl JJ Jr (1988) The Mathematics of Nonlinear Programming. Springer-Verlag, New York

    MATH  Google Scholar 

  30. Rao CR (1973) Linear Statistical Inference and its Applications, 2nd ed. Wiley, New York

    MATH  Google Scholar 

  31. Scholz M, Schmidt S, Loesgen S, Bickeboller H (1999) Analysis of principal component based quantitative phenotypes for alcoholism. Genet Epidemiol 17(Supplement 1):S313–S318

    Google Scholar 

  32. Schorck NJ (1993) Extended multipoint identity-by-descent analysis of human quantitative traits: efficiency, power, and modeling considerations. Amer J Hum Genet 53:1306–1319

    Google Scholar 

  33. Self SG, Liang K-Y (1987) Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J Amer Stat Assoc 82:605–610

    Article  MATH  MathSciNet  Google Scholar 

  34. Strieker C, Fernando RL, Elston RC (1995) Linkage analysis with an alternative formulation for the mixed model of inheritance: The finite polygenic mixed model. Genetics 141:1651–1656

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

(2003). The Polygenic Model. In: Applied Probability. Springer Texts in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22711-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22711-5_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00425-9

  • Online ISBN: 978-0-387-22711-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics