Skip to main content

Instrumentation in Experimental Design

  • Chapter
Accidental Injury

Abstract

Insightful experimental design is crucial to the success of investigative science. Application of appropriate technique and technology follows recognition of the problem to be solved. Investigation of the biomechanics of trauma often involves discovering how input energy relates to resulting kinematics and dynamics, and how these quantities correlate with observed injury. It is in this way that injury responses, tolerances, and mechanisms are determined This information is vital to the development of predictive models that assist engineers, physicians, and scientists in their efforts to understand and reduce injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 359.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dally JW, Riley WF. Experimental stress analysis. 2nd ed. McGraw-Hill, New York, 1978.

    Google Scholar 

  2. Millman J. Microelectronics: digital and analog circuits and systems. McGraw-Hill, New York, 1979.

    Google Scholar 

  3. Morrison R. Grounding and shielding techniques in instrumentation. 3rd ed. John Wiley, New York, 1986.

    Google Scholar 

  4. Nachtigal CL, ed. Instrumentation and control: fundamentals and applications. John Wiley, New York, 1990.

    Google Scholar 

  5. Normann RA. Principles of bioinstrumentation. John Wiley, New York, 1988.

    Google Scholar 

  6. Oppenheim AV, Willsky AS, Young IT. Signals and systems Prentice-Hall, Englewood Cliffs,1983.

    Google Scholar 

  7. Ribbens WB. Fundamentals of electronic instru mentation for measurement. Campus Publishers, Ann Arbor, MI, 1973.

    Google Scholar 

  8. Tse FS, Morse IE. Measurement and instrumen tation in engineering: principles and basic labo- ratory experiments Marcel Dekker, New York,1989.

    Google Scholar 

  9. Webster JG, ed. Medical instrumentation: appli and design. 2nd ed. Houghton Mifflin, Bosten 1992.

    Google Scholar 

  10. SAE J211/1. Instrumentation for impact testpart 1. Electronic Instrumentation. Society of Automotive Engineers, March 1995.

    Google Scholar 

  11. Beer FP, Johnston ER. Mechanics of materials. McGraw-Hill, New York, 1981.

    Google Scholar 

  12. Beer FP, Johnston ER. Vector mechanics for Hill, New

    Google Scholar 

  13. Mertz HJ. Kinematics and kinetics of whiplash. Ph.D. dissertation. Wayne State University, Detroit, 1967.

    Google Scholar 

  14. Ewing CL, Thomas DJ, Beeler GW, Patrick LM, Gillis DB. Dynamic response of the head and neck of the living human to Gx impact acceleration. Twelfth Stapp Car Crash Conference. SAE 680792, pp. 424–439, 1968.

    Google Scholar 

  15. Clarke TD, Gragg CD, Sprouffske JF, Trout EM, Zimmerman RM, Muzzy WH. Human head and angular accelerations during impact. Fifteenth Stapp Car Crash Conference. SAE 710857, pp. 269–286, 1971.

    Google Scholar 

  16. Padgaonkar AJ, Krieger KW, King AI. Measurement of angular acceleration of a rigid body using linear accelerometers. J Appl Mech 1975; 42: 552–556.

    Article  Google Scholar 

  17. Chou CC, Sinha SC. On the kinematics of the head using linear acceleration measurements. J Biomech 1976;9:607–613.

    Google Scholar 

  18. Stalnaker RL, Melvin JW, Nusholtz GS, Alem NM, Benson JB. Head impact response. Twenty- first Stapp Car Crash Conference. SAE 770921, pp. 303–335, 1977.

    Google Scholar 

  19. Viano DC, Melvin JW, McLeary IC, Madeira RG, Shee TR, Horsh JD. Measurement of head dynamics and facial contact forces in the hybrid III dummy. Thirtieth Stapp Car Crash Conference. SAE 861891, pp. 269–289, 1986.

    Google Scholar 

  20. Bendjellal F, Oudenard L, Uriot J, Brigout C, Brun-Cassan F. Computation of Hybrid III head dynamics in various impact situations. Thirty-fourth Stapp Car Crash Conference. SAE 902320, pp. 207–232, 1990.

    Google Scholar 

  21. Nusholtz GS, Wu J, Kaiker P. Passenger air-bag study using geometric analysis of rigid-body motion. Exp Mech 1991; 3: 264–371.

    Article  Google Scholar 

  22. 7302B data sheet. Endevco Corp., San Juan Capistrano, California, 1998.

    Google Scholar 

  23. Laughlin DR. A magnetohydrodynamic angular motion sensor for anthropomorphic test device instrumentation. Thirty-third Stapp Car Crash Conference. SAE 892428, pp. 43–77, 1989.

    Google Scholar 

  24. ARS-01 triaxial MHD data sheet. ATA Sensors, Boston, 1992. Albuquerque, New Mexico, 1998.

    Google Scholar 

  25. Hardy WN, Foster CD, King AI, Tashman S. Investigation of brain injury kinematics: Introduction of a new technique. Crash-worthiness, Occupant Protection and Biomechanics in Transportation Systems 1997; 225: 241–254

    Google Scholar 

  26. Schneider LW, Haffner MP, Eppinger RH, et al. Development of advanced ATD thorax system for improved injury assessment in frontal crash environments. Thirty-Sixth Stapp Car Crash Conference. SAE 922520, pp. 129–155, 1992.

    Google Scholar 

  27. Eppinger RH. On the development of a defor mation measurement system and its application toward developing mechanically based injury indices. Thirty-third Stapp Car Crash Conference SAE 892426, pp. 21–28, 1989.

    Google Scholar 

  28. ODAS III technical specifications. DSP Technology, Fremont, CA, 1989.

    Google Scholar 

  29. TDAS (PRO) technical specifications. Diversilinear fied Technical Systems, Seal Beach, CA, 1999.

    Google Scholar 

  30. MINIDAU technical specifications. Kayser-Threde GmbH, Munich, Germany, 1998.

    Google Scholar 

  31. IDDAS user’s manual Robert A. Denton, Rochester Hills, MI, 1994.

    Google Scholar 

  32. DS2434 data sheet. Dallas Semiconductor, Dallas, 1997.

    Google Scholar 

  33. Woods SP, Lee K, Bryzek J. An overview of the IEEE-P1451.2 smart transducer interface module. Analog Integrated Circuits and Signal Processing 1997; 14: 165–177.

    Article  Google Scholar 

  34. Cantrell T. Car 1451, where are you? A look at the IEEE 1451 Standard. Circuit Cellar Ink, February 1999.

    Google Scholar 

  35. EKTAPRO HG Imager model 2000 users manual. Eastman Kodak Co. Motion Analysis Systems Division, San Diego, CA, 1998.

    Google Scholar 

  36. King AI, Yang KH, Hardy WN, Challenging problems and opportunities in impact bio-mechanics. ASME BED 1999; 42: 269–272.

    Google Scholar 

  37. Nelson CV, Jacobs BC, Roberts JC, Bevan MG, Wilson DW. A high-acceleration environment position and velocity sensor for use in automotive crash testing. Fourth Symposium on Research and Development at APL, Johns Hopkins University, Applied Physics Laboratory, 1998.

    Google Scholar 

  38. Ratcliffe MB, Gupta KB, Streicher JT, Savage EB, Bogen DK, Edmunds LH. Use of sonomicrometry and multidimensional scaling to determine the three-dimensional coordinates of multiple cardiac locations: feasibility and Initial implementation. IEEE Trans Biomed Eng 1995; 42 (6): 587–598.

    Google Scholar 

  39. Digital sonomicrometer system overview. Sono-metrics, London, Ontario, 1999. http://www.sonometrics.com.

    Google Scholar 

  40. S1280CS/S1680 Shape Tape. Fredericton, New Brunswick, NJ. 1999 http://www.measurand.com.

    Google Scholar 

  41. Kuppa SM, Olson MB, Yeiser CW, Taylor LM. RAID—an investigative tool to study air bag/upper extremity interactions. Occupant Protection and Injury Assessment in the Automotive Crash Environment 1997; 1231: 245–257.

    Google Scholar 

  42. J3525 User’s Manual Robert A. Denton, Rochester Hills, MI, 1998.

    Google Scholar 

  43. Malacaria CF. A thin, flexible, matrix-based pressure sensor. Sensors, September 1998.

    Google Scholar 

  44. Lu H, Lin G. An investigation of various factors affecting measurement accuracy of the TekScan seat pressure system. Human Factors and Ergonomics Society Fortieth Annual Meeting, pp. 1036–1040, 1996.

    Google Scholar 

  45. Tekscan technology. Tekscan, South Boston, MA, 1999. http://www.tekscan.com.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hardy, W.N. (2002). Instrumentation in Experimental Design. In: Nahum, A.M., Melvin, J.W. (eds) Accidental Injury. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21787-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21787-1_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3168-9

  • Online ISBN: 978-0-387-21787-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics