Skip to main content
  • 6282 Accesses

Abstract

Identification schemes are not classification schemes, although there may be a superficial similarity. An identification scheme for a group of organisms can be devised only after that group has first been classified (i.e., recognized as being different from other organisms). Identification of that group is based on one or more characteristics, or on a pattern of characteristics, which all the members of the group have and which other groups do not have.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • Amann, R I, L Krumholz and D.A. Stahl. 1990. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172: 762–770.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Angert, E.R., KD. Clements and N.R. Pace. 1993. The largest bacterium. Nature 362: 239–241.

    Article  CAS  PubMed  Google Scholar 

  • Barrett, D.M., D.O. Faigel, D.C. Metz, K. Montone and E.E. Furth. 1997. In situ hybridization for Helicobacter pylori in gastric mucosal biopsy specimens: quantitative evaluation of test performance in comparison with the CLO test and thiazine stain. J. Clin. Lab. Anal. 11: 374–379.

    Article  Google Scholar 

  • Barrow, G.I. and R.KA. Feltham (Editors). 1993. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd Ed., Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Board, R.G., D. Jones and F.E. Skinner (Editors). 1992. Identification Methods in Applied and Environmental Microbiology, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • DeLong, E.F., G.S. Wickham and N.R. Pace. 1989. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science. 243: 1360–1363.

    Article  CAS  PubMed  Google Scholar 

  • Forbes, B.A., D.F. Sahn and A.S. Weissfeld. 1998. Bailey and Scott’s Diagnostic Microbiology, 10th Ed., Mosby, St. Louis.

    Google Scholar 

  • Fournier, D., R. Lemieux and D. Couillard. 1998. Genetic evidence for highly diversified bacterial populations in wastewater sludge during biological leaching of metals. Biotechnol. Lett. 20: 27–31.

    Article  CAS  Google Scholar 

  • Hugenholtz, P., C. Pitulle, K.L. Hershberger and N.R. Pace. 1998. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180: 366–376.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Logan, N.A. 1994. Bacterial systematics, Blackwell Scientific Publications, Oxford.

    Book  Google Scholar 

  • Miller, J.M. and C.M. O’Hara. 1995. Substrate utilization systems for the identification of bacteria and yeasts, In Murray, Baron, Pfaller, Ten-over and Yolken (Editors), Manual of Clinical Microbiology, 6th Ed., American Society for Microbiology, Washington, D.C. pp. 103–109.

    Google Scholar 

  • Murray, P.R., E J. Baron, M.A. Pfallen, F.C. Tenover and R.H. Yolken (Editors). 1995. Manual of Clinical Microbiology, 6th Ed., American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Onderdonk, A.B. and M. Sasser. 1995. Gas-liquid and high-performance chromatographic methods for the identification of micoorganisms, In Murray, Baron, Pfaller, Tenover and Yolken (Editors), Manual of Clinical Microbiology, 6th Ed., American Society for Microbiology, Washington, D.C. pp. 123–129.

    Google Scholar 

  • Podzorski, R. and D.H. Persing. 1995. Molecular detection and identification of microorganisms, In Murray, Baron, Pfaller, Tenover and Yolken (Editors), Manual of Clinical Microbiology, 6th Ed., American Society for Microbiology, Washington, D.C. pp. 130–157.

    Google Scholar 

  • Rainey, F.A., N.L. Ward-Rainey, P.H. Janssen, H. Hippe and E. Stackebrandt. 1996. Clostridium paradoxum DSM 7308T contains multiple 16S rRNA genes with heterogeneous intervening sequences. Microbiology (Reading). 142: 2087–2095.

    Google Scholar 

  • Smibert, R.M. and N.R. Krieg. 1995. Phenotypic characterization, In Gerhardt, Murray, Wood and Krieg (Editors), Methods for General and Molecular Bacteriology, American Society for Microbiology, Washington, D.C. pp. 607–654.

    Google Scholar 

  • Teske, A., P. Sigalevich, Y. Cohen and G. Muyzer. 1996. Molecular identification of bacteria from a coculture by denaturing gradient gel electrophoresis of 16S ribosomal DNA fragments as a tool for isolation in pure cultures. Appl. Environ. Microbiol. 62: 4210–4215.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wise, M.G., TV. Matchers and LC. Shanties. 1997. Bacterial diversity of a Carolina bay as determined by 16S rRNA gene analysis: confirmation of novel taxa. Appl. Environ. Microbiol. 63: 1505–1514.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Krieg, N.R. (2001). Identification of Procaryotes. In: Boone, D.R., Castenholz, R.W., Garrity, G.M. (eds) Bergey’s Manual® of Systematic Bacteriology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21609-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21609-6_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3159-7

  • Online ISBN: 978-0-387-21609-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics