Skip to main content

Abstract

Bowed string instruments have held a special place in music for many years. They form the backbone of the symphony orchestra, and they are widely used as solo instruments and in chamber music as well. They are instruments of great beauty and versatility. Unlike many other musical instruments, bowed string instruments have been the objects of considerable scientific study. Even so, their acoustical behavior is just beginning to be understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ågren, C.-H. (1968). A second look at the viol family. Catgut Acoust. Soc. Newsletter, No. 10, 6–11.

    Google Scholar 

  • Ågren, C.-H., and Stetson, K.A. (1972). Measuring the resonances of treble viol plates by hologram interferometry and designing an improved instrument. J. Acoust Soc. Am. 51, 1971–1983.

    Article  Google Scholar 

  • Alonso Moral, J. (1984). Form properties of free top plates, of free back plates, and of ribs of properties of assembled violins. Report STL-QPSR 1/1984, pp. 1–29. Speech Transmission Laboratory, Royal Institute of Technology (KTH), Stockholm.

    Google Scholar 

  • Alonso Moral, J., and Jansson, E. (1982a). Eigenmodes, input admittance, and the function of the violin. Acustica 50, 329–337.

    Google Scholar 

  • Alonso Moral, J., and Jansson, E. (1982b). Input admittance, eigenmodes, and quality of violins. Report STL-QPSR 2–3/1982, pp. 60–75. Speech Transmission Laboratory, Royal Institute of Technology (KTH), Stockholm.

    Google Scholar 

  • Askenfelt, A. (1982). Eigenmodes and tone quality of the double bass. Catgut Acoust Soc. Newsletter, No. 38, 34–39.

    Google Scholar 

  • Askenfelt, A. (1986). Measurement of bow motion and bow force in violin playing. J. Acoust Soc. Am. 80, 1007–1015.

    Article  ADS  Google Scholar 

  • Askenfelt, A. (1992). Observations on the dynamic properties of violin bows. Report STL-APSR 4/1992, pp. 43–48. Speech transmission Laboratory, Royal Institute of Technology (KTH), Stockholm.

    Google Scholar 

  • Beldie, I.P. (1974). Vibration and sound radiation of the violin at low frequencies. Catgut Acoust. Soc. Newsletter, No. 22, 13–14.

    Google Scholar 

  • Bissinger, G. (1995). Bounce test, modal analysis, and the playing qualities of the violin bow. Catgut Acoust. Soc. J. 2 (8), 17–22.

    Google Scholar 

  • Bissinger, G. (1996). Acoustic normal modes below 4 kHz for a rigid, closed, violin-shaped cavity. J. Acoust Soc. Am. 100, 1835–1840.

    Article  ADS  Google Scholar 

  • Bladier, B. (1960). Sur le chevalet du violoncelle. Translated by R.B. Lindsay, in “Musical Acoustics, Part I. Violin Family Components’ (C.M. Hutchins, ed.), pp. 296–298. Dowden, Hutchinson, and Ross, Stroudsburg, Pennsylvania, 1975.

    Google Scholar 

  • Bynum, E., and Rossing, T.D. (1997). Holographic studies of cello vibrations. Proc. IS MA 97, Edinburgh.

    Google Scholar 

  • Caldersmith, G. (1981). Plate fundamental coupling and its musical importance. J. Catgut Acoust. Soc. 36, 21–27.

    Google Scholar 

  • Cremer, L. (1984). “The Physics of the Violin.” Translated by J.S. Allen, MIT Press, Cambridge, Massachusetts. “Physik der Geige.” S. Hirzel Verlag, Stuttgart, 1981.

    Google Scholar 

  • Cremer, L., and Lazarus, H. (1968). Der Einflusz des Bogendruckes beim Anstreichen einer Saite. Proc. ICA, Tokyo.

    Google Scholar 

  • Diinnwald, H. (1983). Auswertung von Geigenfrequenzgangen. Proc. 11th ICA, Paris, 4, 373–376.

    Google Scholar 

  • Diinnwald, H. (1985). Ein Verfahren zur objektiven Bestimmung der Klan- gualitat von Violinen. Acustica 58, 162–169.

    Google Scholar 

  • Fang, N. J.-J., and Rodgers, O. E. (1992). Violin soundpost elastic vibration. J. Catgut Acoust Soc. 2 (1), 39–40.

    Google Scholar 

  • Firth, I. (1987). Construction and performance of quality commercial violin strings. J. Catgut Acoust Soc. 47, 17–20.

    Google Scholar 

  • Guettler, K. (1994). Wave analysis of a string bowed to anomalous low frequencies. J. Catgut Acoust Soc. 2 (6), 8–14.

    Google Scholar 

  • Giith, W. (1978). “Gesichtspunkte beider Konstruktion eines Resonanz-Wolf- dampfers furs Cello. Acustica 41, 177–182.

    Google Scholar 

  • Hacklinger, M. (1978). Violin timbre and bridge frequency response. Acustica 39, 323–330.

    Google Scholar 

  • Hacklinger, M. (1979). Violin adjustment—Strings and bridges. Catgut Acoust. Soc. Newsletter, No. 31, 17–19.

    Google Scholar 

  • Hacklinger, M. (1980). Note on bridge inclination. Catgut Acoust Soc. Newsletter, No. 33, 18.

    Google Scholar 

  • Hanson, R. J., Schneider, A. J., and Halgedahl, F. W. (1994). Anomalous low- pitched tones from a bowed violin string. Catgut Acoust. Soc. J. 2 (6), 1–17.

    Google Scholar 

  • Helmholtz, H.L.F. (1877). “On the Sensations of Tone,” 4th ed. Translated by A.J. Ellis, Dover, New York, 1954.

    Google Scholar 

  • Hutchins, C.M. (1967). Founding a family of fiddles. Phys. Today 20, 23–27.

    Article  Google Scholar 

  • Hutchins, C.M. (editor) (1975–6). “Musical Acoustics, Parts I and II.” Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.

    Google Scholar 

  • Hutchins, C.M. (1980). The new violin family. In “Sound Generation in Winds, Strings, Computers,” pp. 182–203. Royal Swedish Academy of Music, Stockholm.

    Google Scholar 

  • Hutchins, C.M. (1981). The acoustics of violin plates. Scientific American 245 (4), 170–186.

    Article  Google Scholar 

  • Hutchins, C.M. (1983). A history of violin research. J. Acoust. Soc. Am. 73, 1421–1440.

    Article  ADS  Google Scholar 

  • Hutchins, C.M. (1987). Some notes on free plate tuning frequencies for violins, violas and cellos. J. Catgut Acoust. Soc. 47, 39–41.

    Google Scholar 

  • Hutchins, C.M. (1990). A study of the cavity resonances of a violin and their effects on its tone and playing qualities. J. Acoust Soc. Am. 87, 392–397.

    Article  ADS  Google Scholar 

  • Hutchins, C.M. (1993). Mode tuning for the violin maker. J. Catgut Acoust Soc. 2 (4), 5–9.

    MathSciNet  Google Scholar 

  • Hutchins, C.M., and Benade, V. (editors) (1997). “Research Papers in Violin Acoustics 1975–1993,” 2 vols. Acoustical Society of America, Woodbury, New York.

    Google Scholar 

  • Hutchins, C.M., Stetson, K.A., and Taylor, P.A. (1971). Clarification of “free plate tap tones” by holographic interferometry. J. Catgut Acoust Soc. 16, 15–23.

    Google Scholar 

  • Jansson, E. (1976). Long-term-average spectra applied to analysis of music. Part III: A simple method for surveyable analysis of complex sound sources by means of a reverberation chamber. Acustica 34, 275–280.

    Google Scholar 

  • Jansson, E.V. (1977). Acoustical properties of complex cavities. Prediction and measurements of resonance properties of violin-shaped and guitar-shaped cavities. Acustica 37, 211–221.

    Google Scholar 

  • Jansson, E. V. (1997). Admittance measurements of 25 high quality violins. Acustica 83, 337–341.

    Google Scholar 

  • Jansson, E., Bork, I., and Meyer, J. (1986). Investigation into the acoustical properties of the violin. Acustica 62, 1–15.

    Google Scholar 

  • Jansson, E. V., Molin, N.-E., and Saldner, H. O. (1994). On eigenmodes of the violin—Electronic holography and admittance measurements. J. Acoust. Soc. Am. 95, 1100–1105.

    Article  ADS  Google Scholar 

  • Jansson, E., Molin, N.-E., and Sundin, H. (1970), Resonances of a violin studied by hologram interferometry and acoustical methods, Phys. Scripta 2, 243–256.

    Google Scholar 

  • Kondo, M., Kubota, H., and Sakakibara, H. (1986). Measurement of torsional motion of bowed strings with a helix pattern on its surface. Paper K3–8, Proc. 12th Int’l. Congress on Acoustics, Toronto.

    Google Scholar 

  • Krigar-Menzel, O., and Raps, A. (1891). Aus der Sitzungberichten. Ann. Phys. Chem. 44, 613–641.

    Google Scholar 

  • Lee, A.R., and Rafferty, M.P. (1983). Longitudinal vibrations in violin strings. J. Acoust Soc. Am. 73, 1361–1365.

    Article  ADS  Google Scholar 

  • Lee, R.M. (1975). An investigation of two violins using a computer graphic display. Acustica 32, 78–88.

    Google Scholar 

  • Luke, J.C. (1971). Measurement and analysis of body vibrations of a violin. J. Acoust. Soc. Am. 49, 1264–1274.

    Article  ADS  Google Scholar 

  • Marshall, K.D. (1985). Modal analysis of a violin. J. Acoust Soc. Am. 77, 695–709.

    Article  ADS  Google Scholar 

  • Mclntyre, M.E., and Woodhouse, J. (1978). The acoustics of stringed musical instruments. Interdisciplinary Science Reviews 3, 157–173.

    Article  Google Scholar 

  • Menzel, R.E., and Hutchins, C.M. (1970). The optical proximity detector in violin testing. Catgut Acoust. Soc. Newsletter, No. 13, 30–35.

    Google Scholar 

  • Meyer, J. (1972). Directivity of bowed stringed instruments and its effect on orchestral sound in concert halls. J. Acoust. Soc. Am. 51, 1994–2009.

    Article  ADS  Google Scholar 

  • Meyer, J. (1975). Akustische Untersuchungen zur Klangqualitat von Geigen. Instrumentenbau 29 (2), 2–8.

    Google Scholar 

  • Meyer, J. (1985). The tonal quality of violins. Proc. SMAC 83. Royal Swedish Academy of Music, Stockholm.

    Google Scholar 

  • Meyer, J. (1992) Zur klanglichen Wirkung des Streicher-Vibratos. Acustica 76, 283–291.

    Google Scholar 

  • Minnaert, M., and Vlam, C.C. (1937). The vibrations of the violin bridge. Physica 4, 361–372.

    Article  ADS  Google Scholar 

  • Molin, N.-E., Wahlin, A. O., and Jansson, E. V. (1990). Transient wave response of the violin body. J. Acoust. Soc. Am. 88, 2479–2481.

    Article  ADS  Google Scholar 

  • Molin, N.-E., Wahlin, A. O., and Jansson, E. V. (1991). Transient wave response of the violin body revisited. J. Acoust. Soc. Am. 90, 2192–2195.

    Google Scholar 

  • Miiller, H.A. (1979). The function of the violin bridge. Catgut Acoust. Soc. Newsletter, No. 31, 19–22.

    Google Scholar 

  • Miiller, H.A., and Geissler, P. (1983). Modal analysis applied to instruments of the violin family. Proc. SMAC 83 Royal Swedish Academy of Music, Stockholm.

    Google Scholar 

  • Miiller, G., and Lauterborn, W. (1996). The bowed string as a nonlinear dynamical system. Acustica 82, 657–664.

    Google Scholar 

  • Niewczyk, B., and Jansson, E. (1987). Experiments with violin plates. Report STL-QPSR 4/1987, pp. 25–42. Speech Transmission Laboratory, Royal Inst, of Tech. (KTH), Stockholm.

    Google Scholar 

  • Pickering, N. (1984). A study of bow hair and rosin. J. Violin Soc. Am. 7 (1), 46–72.

    Google Scholar 

  • Pickering, N. (1991). “The Bowed String.” Amereon, Ltd., Mattituck, NY.

    Google Scholar 

  • Pickering, N.C. (1985). Physical properties of violin strings. J. Catgut Acoust. Soc. 44, 6–8.

    Google Scholar 

  • Pickering, N.C. (1986a). Transient response of certain violin strings. J. Catgut Acoust. Soc. 45, 24–26.

    Google Scholar 

  • Pickering, N.C. (1986b). Elasticity of violin strings. J. Catgut Acoust. Soc. 46, 2–3.

    Google Scholar 

  • Pitteroff, R. (1994). Modelling of the bowed string taking into account the width of the bow. Proc. SMAC 93, Ed. A. Friberg, J. Ewarsson, E. Jansson, and J. Sundberg (Royal Swedish Acad. Music, Stockholm ).

    Google Scholar 

  • Pitteroff, R., and Woodhouse, J. (1998). Mechanics of the contact area between bow and string. Part I: Reflection and transmission behaviour. Acustica 84, 543–562.

    Google Scholar 

  • Powell, R.L., and Stetson, K.A. (1965). Interferometric vibration analysis by wavefront reconstruction. J. Opt. Soc. Am. 55, 1593–1598.

    Article  ADS  Google Scholar 

  • Rakowski, A. (1985). Bowed instruments—Close relatives of the singing voice. Proc. SMAC 83. Royal Swedish Academy of Music, Stockholm.

    Google Scholar 

  • Raman, C.V. (1916). On the wolf-note in bowed string instruments. Phil. Mag. 32, 391–395.

    Article  Google Scholar 

  • Raman, C.V. (1918). On the mechanical theory of the vibrations of bowed strings and of musical instruments of the violin family, with experimental verification of the results. Bull. 15, The Indian Association for the Cultivation of Science.

    Google Scholar 

  • Reder, O. (1970). The search for the perfect bow. Catgut Acoust. Soc. Newsletter, No. 13, 21–23.

    Google Scholar 

  • Reinecke, W. (1973). “Ubertragungseigenschaften des Streichinstrumentenstegs. Catgut Acoust. Soc. Newsletter, No. 19, 26–34.

    Google Scholar 

  • Reinecke, W., and Cremer, L. (1970). Application of holographic interferometry to vibrations of the bodies of string instruments. J. Acoust. Soc. Am. 48, 988–992.

    Article  ADS  Google Scholar 

  • Richardson, B.E., Roberts, G.W., and Walker, G. P. (1987). Numerical modelling of two violin plates. J. Catgut Acoust. Soc. 47, 12–16.

    Google Scholar 

  • Roberts, G.W. (1986). Vibrations of shells and their relevance to musical instruments. PhD dissertation, University College, Cardiff.

    Google Scholar 

  • Roberts, M., and Rossing, T. D. (1997). Vibrational modes of two violins. 133 rd meeting, Acoust. Soc. Am., Penn State Univ., June 15–20, 1997.

    Google Scholar 

  • Roberts, M., and Rossing, T.D. (1997). Normal modes of vibration in violins. Proc. IS MA 97, Edinburgh.

    Google Scholar 

  • Rodgers, O.E. (1986). Initial results on finite element analysis of violin backs. J. Catgut Acoust. Soc. 46, 18–23.

    Google Scholar 

  • Rossing, T.D. (1982). “The Science of Sound.” Addison-Wesley, Reading, Massachusetts. Chap. 10.

    Google Scholar 

  • Rubin, C., and Farrar, D.F., Jr. (1987). Finite element modeling of violin plate vibrational characteristics. J. Catgut Acoust. Soc. 47, 8–11.

    Google Scholar 

  • Sacconi, S.F. (1979). “The ‘Secrets’ of Stradivari.” Libreris del Convegno, Cremona.

    Google Scholar 

  • Saldner, H. O., Molin, N.-E., and Jansson, E. V. (1996). Vibration modes of the violin forced via the bridge and action of the soundpost. J. Acoust. Soc. Am. 100, 1168–1177.

    Article  ADS  Google Scholar 

  • Saunders, F.A. (1937). The mechanical action of violins, J. Acoust. Soc. Am. 9, 91–98.

    ADS  Google Scholar 

  • Savart, F. (1840). Des instruments de musique. Translated by D.A. Fletcher, in Hutchins (1976), pp. 15–18.

    Google Scholar 

  • Schelleng, J.C. (1963). The violin as a circuit. J. Acoust. Soc. Am. 35, 326–338.

    Article  ADS  Google Scholar 

  • Schelleng, J.C. (1973). The bowed string and the player. J. Acoust. Soc. Am. 53, 26–41.

    Article  ADS  Google Scholar 

  • Schleske, M. (1996). Eigenmodes of vibration in the working process of a violin. Catgut Acoust. Soc. J. 3 (1), 2–8.

    Google Scholar 

  • Schumacher, R.T. (1975). Some aspects of the bow. Catgut Acoust. Soc. Newsletter, No. 24, 5–8.

    MathSciNet  Google Scholar 

  • Shaw, E.A.G. (1990). Cavity resonance in the violin: Network representation and the effect of damped and undamped rib holes. J. Acoust. Soc. Am. 87, 398–410.

    Article  ADS  Google Scholar 

  • Steinkopf, G. (1963). Unpublished thesis. Techn. Univ. Berlin, described by Cremer (1984).

    Google Scholar 

  • Small, A.M. (1937). An objective analysis of violin performance. Univ. Iowa Studies in the Psychology of Music 4, 172–231.

    Google Scholar 

  • Stetson, K.A. (1990). Theory and applications of electronic holography. Proc. Soc. Experimental Mechanics Con. On Hologram Interferometry and Speckle Metrology, 294–300.

    Google Scholar 

  • Weinreich, G. (1985). Violin radiativity: Concepts and measurements. Proc. SMAC 83. Royal Swedish Academy of Music, Stockholm, pp. 99–109.

    Google Scholar 

  • Weinreich, G. (1994). Radiativity revisited: Theory and experiment ten years later. Proc. SMAC 93, Ed. A. Friberg, J. Ewarsson, E. Jansson, and J. Sundberg. Royal Swedish Acad. Music, Stockholm.

    Google Scholar 

  • Weinreich, G., and Causse, R. (1991). Elementary stability considerations for bowed-string motion. J. Acoust. Soc. Am. 89, 887–895.

    Article  ADS  Google Scholar 

  • Woodhouse, J. (1993). On the playability of violins. Part I: Reflection functions; and Part II: Minimum bow force and transients. Acustica 78, 125–136 and 137–153.

    Google Scholar 

  • Woodhouse, J. (1995). Self-sustained musical oscillators. In “Mechanics of Musical Instruments,” ed. A. Hirschberg, J. Kergomard, and G. Weinreich. Springer-Verlag, Wien.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fletcher, N.H., Rossing, T.D. (1998). Bowed String Instruments. In: The Physics of Musical Instruments. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21603-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21603-4_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3120-7

  • Online ISBN: 978-0-387-21603-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics