Skip to main content

The Role and Means for Tertiary Didactics in a Faculty of Science

  • Chapter
University Science and Mathematics Education in Transition

Until a few years ago, university teaching of science was considered the specialists' private craft in Danish research universities. Excellent research remains the main parameter in young scientists' careers. But for the same reasons as elsewhere — including broader student populations and higher demands on efficiency of educational programmes — universities are increasingly preoccupied by the quality of their teaching, as are funding authorities. The notion of quality may be rather vague, and the means for improvement similarly unclear. This chapter is an attempt to analyze the potential roles and contributions of the didactics of science and mathematics towards the articulation and response to these demands for “quality teaching”. In the continental European tradition, we talk about the didactics of a subject (such as geometry or physics) when we refer to the study of teaching and learning of that specific subject, as explained by, e.g., Chevallard (1999a). Notice that the subject area referred to may be very specific (e.g., “Newtonian mechanics”) or very general (e.g., “(natural) science”), although it is often an institutionally established discipline (e.g., physics)

The pressure on universities for improved “throughput” manifests itself in numerous ways but primarily through a broad scope of “top-down” initiatives (see Horst and Laursen, Chap. 10). Political or administrative demands may or may not originate in genuine pedagogical considerations, and it may or may not result in initiatives that are helpful for improving teaching quality. However, if we leave it to the individual university teacher to interpret these demands, they may often be seen as unnecessary additional administrative burdens rather than helpful tools for improving teaching quality. Since the result of any initiative intended to affect teaching (or learning) depends, ultimately, on the actual educational activities initiated by teachers, un-mediated top-down initiatives are likely to have either no effect or even a negative effect, if teachers spend time on something they perceive as irrelevant extra administration and less time on students and teaching

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Artigue, M. (1994). Didactical Engineering as a Framework for the Conception of Teaching Products. In R. Biehler, R.W. Scholz, R. Strässer & B. Winkelmann (Eds.), Didactics of Mathematics as a Scientific Discipline (pp. 27–39). Dordrecht: Kluwer

    Google Scholar 

  • Bachelard, G. (1938; English translation 2002). The Formation of the Scientific Mind. Manchester: Clinamen Press

    Google Scholar 

  • Barbé, J., Bosch, M., Espinoza, L. & Gascón, J. (2005). Didactic Restrictions on Teachers' Practice: The Case of Limits of Functions at Spanish High Schools. Educational Studies in Mathematics, 59(1–3), 235–268

    Article  Google Scholar 

  • Bowden, J.A. & Marton, F. (1998). The University of Learning: Beyond Quality and Competence. London: Kogan Page

    Google Scholar 

  • Chevallard, Y. (1991). La transposition didactique: du savoir savant au savoir enseigné. Grenoble: La pensée sauvage

    Google Scholar 

  • Chevallard, Y. (1999a). Didactique? You Must be Joking! A Critical Comment on Terminology. Instructional Science, 27, 5–7

    Google Scholar 

  • Chevallard, Y. (1999b). L'analyse des pratiques enseignantes en théorie anthropologique du didactique. Recherches en Didactique des Mathématiques 19(2), 221–265

    Google Scholar 

  • Chevallard, Y. (2002). Organiser l'étude 3. Écologie & régulation. In J.L. Dorier, et al. (Eds.), Actes de la 11e école de didactique des mathématiques. Grenoble: La Pensée Sauvage

    Google Scholar 

  • Context Rich Problems, web page for University of Minnesota Physics Education Research and Development. Retrieved May 2005. http://groups.physics.umn.edu/physed/Research/CRP/ crintro.html

  • Crouch, C.H., Fagen, A.P., Callan, E.P. & Mazur, E. (2004). Classroom Demonstrations: Learning Tools or Entertainment? American Journal of Physics, 72(6), 835–838

    Article  Google Scholar 

  • Grønbæk, N. & Winsløw, C. (2007). Developing and Assessing Specific Competencies in a First Course on Real Analysis. In F. Hitt, G. Harel & A. Selden (Eds.), Research in Collegiate Mathematics Education VI (pp. 99–138). Providence, RI: American Mathematical Society

    Google Scholar 

  • Hasse, C. (2002). Kultur i bevægelse — fra deltagerobservation til kulturanalyse — i det fysiske rum. Frederiksberg: Samfundslitteratur

    Google Scholar 

  • Kim, E. & Pak, S.-J. (2002). Students do not Overcome Conceptual Difficulties After Solving 1000 Traditional Problems. American Journal of Physics, 70(7), 759–765

    Article  Google Scholar 

  • Kuhn, T. (1970). The Structure of Scientific Revolutions. Chicago: University of Chicago Press

    Google Scholar 

  • Rump, C. & Horst, S. (2004). Fysik 1, blok 1, E2004, available through the authors or at http:// www.ind.ku.dk/udvikling/projekter/

  • Ulriksen, L. (2003). Hvad skal de studerende lære i fysik? Et lærerperspektiv. In N.O. Andersen & K.B. Laursen (Eds.), Studieforløbsundersøgelser i naturvidenskab — en antologi. Copenhagen: Center for Naturfagenes Didaktik

    Google Scholar 

  • Winsløw, C. (2006). Research and Development of University Level Teaching: The Interaction of Didactical and Mathematical Organisations. In M. Bosch (Ed.), Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education (pp. 1821–1830). Barcelona: Universitat Ramon Llull – ERME

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rump, C., Winsløw, C. (2009). The Role and Means for Tertiary Didactics in a Faculty of Science. In: Skovsmose, O., Valero, P., Christensen, O.R. (eds) University Science and Mathematics Education in Transition. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09829-6_12

Download citation

Publish with us

Policies and ethics