Skip to main content

Mitochondrial Oscillations in Physiology and Pathophysiology

  • Chapter
Cellular Oscillatory Mechanisms

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 641))

Abstract

Oscillations in chemical reactions and metabolic pathways have historiacally served as prototypes for understanding the dynamics of complex nonlinear systems. This chapter reviews the oscillatory behavior of mitochondria, with a focus on the mitochondrial oscillator dependent on reactive oxygen species (ROS), as first described in heart cells. Experimental and theoretical evidence now indicates that mitochondrial energetic variables oscillate autonomously as part of a network of coupled oscillators under both physiological and pathological conditions. The physiological domain is characterized by small-amplitude oscillations in mitochondrial membrane potential (ΔΨm) showing correlated behavior over a wide range of frequencies, as determined using Power Spectral Analysis and Relative Dispersion Analysis of long term recordings of ΔΨm. Under metabolic stress, when the balance between ROS generation and ROS scavenging is perturbed, the mitochondrial network throughout the cell locks to one main low-frequency, high-amplitude oscillatory mode. This behavior has major pathological implications because the energy dissipation and cellular redox changes that occur during ΔΨm depolarization result in suppression of electrical excitability and Ca2+ handling, the two main functions of the cardiac cell. In an ischemia/reperfusion scenario these alterations scale up to the level of the whole organ, giving rise to fatal arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Strogatz SH, Sync. The Emerging Science of Spontaneous Order. New York: Hyperion Books, 2003.

    Google Scholar 

  2. Pikovsky A, Rosenblum M, Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. Vol. 29. Cambridge: Cambridge University Press, 2001.

    Google Scholar 

  3. van der Pol B, van der Mark J. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Phil Mag 1928; 6:763–775.

    Google Scholar 

  4. Hess B, Boiteux A. Oscillatory phenomena in biochemistry. Annu Rev Biochem 1971; 40:237–258.

    Article  PubMed  CAS  Google Scholar 

  5. Rapp PE. An atlas of cellular oscillators. J Exp Biol 1979; 81:281–306.

    PubMed  CAS  Google Scholar 

  6. Berridge MJ, Rapp PE. A comparative survey of the function, mechanism and control of cellular oscillators. J Exp Biol 1979; 81:217–279.

    PubMed  CAS  Google Scholar 

  7. Lloyd D, Aon MA, Cortassa S. Why homeodynamics, not homeostasis? Scientific World Journal 2001; 1:133–145.

    PubMed  CAS  Google Scholar 

  8. Winfree AT. The prehistory of the Belousov-Zhabotinsky oscillator. J Chem Educ 1984; 61:661–663.

    Article  Google Scholar 

  9. Zhabotinky AM. Periodic course of the oxidation of malonic acid in a solution (Studies on the kinetics of beolusov’s reaction). Biofizika 1964; 9:306–311.

    Google Scholar 

  10. Duysens LN, Amesz J. Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region. Biochim Biophys Acta 1957; 24(1):19–26.

    Article  PubMed  CAS  Google Scholar 

  11. Chance B, Estabrook RW, Ghosh A. Damped sinusoidal oscillations of cytoplasmic reduced pyridine nucleotide in yeast cells. Proc Natl Acad Sci USA 1964; 51:1244–1251.

    Article  PubMed  CAS  Google Scholar 

  12. Hommes FA, Schuurmansstekhoven FM. Aperiodic changes of reduced nicotinamide-adenine dinucleotide during anaerobic glycolysis in brewer’s yeast. Biochim Biophys Acta 1964; 86:427–428.

    PubMed  CAS  Google Scholar 

  13. Chance B, Schoener B, Elsaesser S. Control of the waveform oscillations of the reduced pyridine nucleotide level in a cell-free extract. Proc Natl Acad Sci USA 1964: 52:337–341.

    Article  PubMed  CAS  Google Scholar 

  14. Chance B, Schoener B, Elsaesser S. Metabolic control phenomena involved in damped sinusoidal oscillations of reduced diphosphopyridine nucleotide in a cell-free extract of saccharomyces carlsbergensis. J Biol Chem 1965; 240:3170–3181.

    PubMed  CAS  Google Scholar 

  15. Frenkel R. DPNH oscillations in glycolyzing cell free extracts from beef heart. Biochem Biophys Res Commun 1965; 21(5):497–502.

    Article  PubMed  CAS  Google Scholar 

  16. Frenkel R. Control of reduced diphosphopyridine nucleotide oscillations in beef heart extracts. II. Oscillations of glycolytic intermediates and adenine nucleotides. Arch Biochem Biophys 1968; 125(1):157–165.

    Article  PubMed  CAS  Google Scholar 

  17. Frenkel R. Control of reduced diphosphopyridine nucleotide oscillations in beef extracts. I. Effects of modifiers of phosphofructokinase activity. Arch Biochem Biophys 1968; 125(1):151–156.

    Article  PubMed  CAS  Google Scholar 

  18. Frenkel R. Control of reduced diphosphopyridine nucleotide oscillations in beef heart extracts. III. Purification and kinetics of beef heart phosphofructokinase. Arch Biochem Biophys 1968; 125(1):166–174.

    Article  PubMed  CAS  Google Scholar 

  19. Chance B. Federation of european biochemical societies: Biological and biochemical oscillators. New York: Academic Press 1973, (proceedings).

    Google Scholar 

  20. Lloyd D, Murray DB. The temporal architecture of eukaryotic growth. FEBS Lett 2006; 580(12):2830–2835.

    Article  PubMed  CAS  Google Scholar 

  21. Richard P. The rhythm of yeast. FEMS Microbiol Rev 2003; 27(4):547–557.

    Article  PubMed  CAS  Google Scholar 

  22. Madsen MF, Dano S, Sorensen PG. On the mechanisms of glycolytic oscillations in yeast. FEBS J 2005; 272(11):2648–2660.

    Article  PubMed  CAS  Google Scholar 

  23. Azzi A, Azzone GF. Swelling and shrinkage phenomena in liver mitochondria. II. Low amplitude swelling-shrinkage cycles. Biochim Biophys Acta 1965; 105(2):265–278.

    PubMed  CAS  Google Scholar 

  24. Mustafa MG, Utsumi K, Packer L. Damped oscillatory control of mitochondrial respiration and volume. Biochem Biophys Res Commun 1966; 24(3):381–385.

    Article  PubMed  CAS  Google Scholar 

  25. Packer L, Utsumi R, Mustafa MG. Oscillatory states of mitochondria. I. Electron and energy transfer pathways. Arch Biochem Biophys 1966; 117(2):381–393.

    Article  PubMed  CAS  Google Scholar 

  26. Chance B, Yoshioka T. Sustained oscillations of ionic constituents of mitochondria. Arch Biochem Biophys 1966; 117:451–465.

    Article  PubMed  CAS  Google Scholar 

  27. Evtodienko YV. Sustained oscillations of transmembrane Ca2+ fluxes in mitochondria and their possible biological significance. Membr, Cell Biol 2000; 14:1–17.

    CAS  Google Scholar 

  28. Gylkhandanyan AV, Evtodienko YV, Zhabotinsky AM et al. Continuous Sr2+-induced oscillations of the ionic fluxes in mitochondria. FEBS Lett 1976; 66(1):44–47.

    Article  PubMed  CAS  Google Scholar 

  29. Maglova LM, Holmuhamedov EL, Zinchenko VP et al. Induction of 2H+/Me2+ exchange in rat-liver mitochondria. Eur J Biochem 1982; 128(1):159–161.

    Article  PubMed  CAS  Google Scholar 

  30. Selivanov VA, Ichas F, Holmuhamedov EL et al. A model of mitochondrial Ca(2+)-induced Ca2+ release simulating the Ca2+ oscillations and spikes generated by mitochondria. Biophys Chem 1998; 72(1–2):111–121.

    Article  PubMed  CAS  Google Scholar 

  31. Gooch VD, Packer L. Adenine nucleotide control of heart mitochondrial oscillations. Biochim Biophys Acta 1971; 245(1):17–20.

    Article  PubMed  CAS  Google Scholar 

  32. Gooch VD, Packer L. Oscillatory systems in mitochondria. Biochim Biophys Acta 1974; 346(3–4):245–260.

    PubMed  CAS  Google Scholar 

  33. Gooch VD, Packer L. Oscillatory states of mitochondria: Studies on the oscillatory mechanism of liver and heart mitochondria. Arch Biochem Biophys 1974; 163(2):759–768.

    Article  PubMed  CAS  Google Scholar 

  34. O’Rourke B, Ramza BM, Marban E. Oscillations of membrane current and excitability driven by metabolic oscillations in heart cells. Science 1994; 265(5174):962–966.

    Article  PubMed  CAS  Google Scholar 

  35. Romashko DN, Marban E, O’Rourke B., Subcellular metabolic transients and mitochondrial redox waves in heart cells. Proc Natl Acad Sci USA 1998; 95(4):1618–1623.

    Article  PubMed  CAS  Google Scholar 

  36. Aon MA, Cortassa S, Marban E et al. Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem 2003; 278(45):44735–44744.

    Article  PubMed  CAS  Google Scholar 

  37. Kim YV, Kudzina L, Zinchenko VP et al. Clortetracyline-mediated continuous Ca2+ oscillations in mitochondria of digitonin-treated Tetrahymena pyriformis. Eur J Biochem 1985; 153(3):503–507.

    Article  PubMed  CAS  Google Scholar 

  38. Evtodienko Yu V, Teplova V, Khawaja J et al. The Ca(2+)-induced permeability transition pore is involved in Ca(2+)-induced mitochondrial oscillations: A study on permeabilised Ehrlich ascites tumour cells. Cell Calcium 1994; 15(2):143–152.

    Article  PubMed  CAS  Google Scholar 

  39. Hajnoczky G, Robb-Gaspers LD, Seitz MB et al. Decoding of cytosolic calcium oscillations in the mitochondria. Cell 1995; 82(3):415–424.

    Article  PubMed  CAS  Google Scholar 

  40. Magnus G, Keizer J. Model of beta-cell mitochondrial calcium handling and electrical activity. II. Mitochondrial variables. Am J Physiol 1998; 27(4 Pt 1):C1174–1184.

    Google Scholar 

  41. Pedersen MG, Bertram R, Sherman A. Intra-an inter-islet synchronization of metabolically driven insulin secretion. Biophys J 2005; 89(1):107–119.

    Article  PubMed  CAS  Google Scholar 

  42. Corkey BE, Tornheim K, Deeney JT et al. Linked oscillations of free Ca2+ and the ATP/ADP ratio in permeabilized RINm 5F insulinoma cells supplemented with a glycolyzing cell-free muscle extract. J Biol Chem 1988; 263(9):4254–4258.

    PubMed  CAS  Google Scholar 

  43. Lloyd D. Effects of uncoupling of mitochondrial energy conservation on the ultradian clock-driven oscillations in Saccharomyces cerevisiae continuous culture. Mitochondrion 2003; 3(3): 139–136.

    Article  PubMed  CAS  Google Scholar 

  44. Mironov SL, Richter DW. Oscillations and hypoxic changes of mitochondrial variables in neurons of the brainstem respiratory centre of mice. J Physiol 2001; 533(Pt 1):227–236.

    Article  PubMed  CAS  Google Scholar 

  45. Berns MW, Siemens AE, Walter RJ. Mitochondrial fluorescence patterns in rhodamine 6G-stained myocardial cells in vitro: Analysis by real-time computer video microscopy and laser microspot excitation. Cell Biophys 1984; 6(4):263–277.

    PubMed  CAS  Google Scholar 

  46. Duchen MR, Leyssens A, Crompton M. Transient mitochondrial depolarizations reflect focal sarcoplasmic reticular calcium release in single rat cardiomyocytes. J Cell Biol 1998; 142(4): 975–988.

    Article  PubMed  CAS  Google Scholar 

  47. Loew LM, Tuft RA, Carrington W et al. Imaging in five dimensions: Time-dependent membrane potentials in individual mitochondria. Biophys J 1993; 65(6): 2396–2407.

    PubMed  CAS  Google Scholar 

  48. Buckman JF, Reynolds IJ. Spontaneous changes in mitochondrial membrane potential in cultured neurons. J Neurosci 2001; 21(14):5054–5065.

    PubMed  CAS  Google Scholar 

  49. O’Reilly CM, Fogarty KE, Drummond RM et al. Quantitative analysis of spontaneous mitochondrial depolarizations. Biophys J 2003; 85(5):3350–3357.

    PubMed  CAS  Google Scholar 

  50. O’Reilly CM, Fogarty KE, Drummond RM et al. Spontaneous mitochondrial depolarizations are independent of SR Ca2+ release. Am J Physiol Cell Physiol 2004; 286(5):C1139–1151.

    Article  PubMed  CAS  Google Scholar 

  51. Huser J, Rechenmacher, CE, Blatter LA. Imaging the permeability pore transition in single mitochondria. Biophys J 1998; 74(4):2129–2137.

    PubMed  CAS  Google Scholar 

  52. Huser J, Blatter LA. Fluctuations in mitochondrial membrane potential caused by repetitive gating of the permeability transition pore. Biochem J 1999; 343(Pt 2):311–317.

    Article  PubMed  CAS  Google Scholar 

  53. Vergun O, Votyakova TV, Reynolds IJ. Spontaneous changes in mitochondrial membrane potential in single isolated brain mitochondria. Biophys J 2003; 85(5):3358–3366.

    Article  PubMed  CAS  Google Scholar 

  54. Vergun O, Reynolds IJ. Fluctuations in mitochondrial membrane potential in single isolated brain mitochondria: Modulation by adenine nucleotides and Ca2+. Biophys J 2004; 87(5):3585–3593.

    Article  PubMed  CAS  Google Scholar 

  55. Ichas F, Jouaville LS, Sidash SS et al. Mitochondrial calcium spiking: A transduction mechanism based on calcium-induced permeability transition involved in cell calcium signalling. FEBS Lett 1994; 348(2):211–215.

    Article  PubMed  CAS  Google Scholar 

  56. Zorov DB, Filburn CR, Klotz LO et al. Reactive oxygen species (ROS)-induced ROS release: A new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 2000; 192(7):1001–1014.

    Article  PubMed  CAS  Google Scholar 

  57. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROS-induced ROS release: An update and review. Biochim Biophys Acta 2006; 1757(5–6):509–517.

    PubMed  CAS  Google Scholar 

  58. O’Rourke B. Pathophysiological and protective roles of mitochondrial ion channels. J Physiol 2000; 529(Pt 1):23–36.

    Article  PubMed  CAS  Google Scholar 

  59. O’Rourke B, Ramza BM, Romashko DN et al. Metabolic oscillations in heart cells. Adv Exp Med Biol 1995; 382:165–174.

    PubMed  CAS  Google Scholar 

  60. Cortassa S, Aon MA, Winslow RL et al. A mitochondrial oscillator dependent on reactive oxygen species. Biophys J 2004; 87(3):2060–2073.

    Article  PubMed  CAS  Google Scholar 

  61. Crompton M, Virji S, Doyle V et al. The mitochondrial permeability transition pore. Biochem Soc Symp 1999; 66:167–179.

    PubMed  CAS  Google Scholar 

  62. Duchen MR. Contributions of mitochondria to animal physiology: From homeostatic sensor to calcium signalling and cell death. J Physiol 1999; 516 (Pt 1):1–17.

    Article  PubMed  CAS  Google Scholar 

  63. Beavis AD. On the inhibition of the mitochondrial inner membrane anion uniporter by cationic amphiphiles and other drugs. J Biol Chem 1989; 264(3):1508–1515.

    PubMed  CAS  Google Scholar 

  64. Beavis AD. Properties of the inner membrane anion channel in intact mitochondria. J Bioenerg Biomembr 1992; 24(1):77–90.

    Article  PubMed  CAS  Google Scholar 

  65. Beavis AD, Garlid KD. The mitochondrial inner membrane anion channel: Regulation by divalent cations and protons. J Biol Chem 1987; 262(31):15085–15093.

    PubMed  CAS  Google Scholar 

  66. Aon MA, Cortassa S, O’Rourke B. The fundamental organization of cardiac mitochondria as a network of coupled oscillators. Biophys J 2006b; 91(11):4317–4327.

    Article  PubMed  CAS  Google Scholar 

  67. Stauffer D, Aharony A. Introduction to Percolation Theory. London: Taylor and Francis, 1994.

    Google Scholar 

  68. Feder J. Fractals. New York: Plenum Press, 1988.

    Google Scholar 

  69. Aon MA, O’Rourke B, Cortassa S. The fractal architecture of cytoplasmic organization: Scaling, kinetics and emergence in metabolic networks. Mol Cell Biochem 2004b; 256/257:169–184.

    Article  CAS  Google Scholar 

  70. Akar FG, Aon MA, Tomaselli GF et al. The mitochondrial origin of postischemic arrhythmias. J Clin Invest 2005; 115(12):3527–3535.

    Article  PubMed  CAS  Google Scholar 

  71. Bolli R, Marban E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 1999; 79(2):609–634.

    PubMed  CAS  Google Scholar 

  72. Kleber AG, Rudy Y. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev 2004; 84(2):431–488.

    Article  PubMed  CAS  Google Scholar 

  73. Cortassa S, Aon MA, Marban E et al. An integrated, model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J 2003; 84(4):2734–2755.

    PubMed  CAS  Google Scholar 

  74. O’Rourke B, Cortassa S, Aon MA. Mitochondrial ion channels: Gatekeepers of life and death. Physiology 2005; 20:303–315.

    Article  PubMed  CAS  Google Scholar 

  75. Aon MA, Cortassa S, Akar FG et al. Mitochondrial criticality: A new concept at the turning point of life or death. Biochim Biophys Acta 2006; 1762(2):232–240.

    PubMed  CAS  Google Scholar 

  76. Aon MA, Cortassa S, O’Rourke B. Percolation and criticality in a mitochondrial network. Proc Natl Acad Sci USA 2004a; 101(13):4447–4452.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian O’Rourke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Aon, M.A., Cortassa, S., O’Rourke, B. (2008). Mitochondrial Oscillations in Physiology and Pathophysiology. In: Maroto, M., Monk, N.A.M. (eds) Cellular Oscillatory Mechanisms. Advances in Experimental Medicine and Biology, vol 641. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09794-7_8

Download citation

Publish with us

Policies and ethics