Skip to main content

Reverse Engineering Models of Cell Cycle Regulation

  • Chapter
Cellular Oscillatory Mechanisms

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 641))

Abstract

From general considerations of the basic physiological properties of the cell division cycle, we deduce what the dynamical properties of the underlying molecular control system must be. Then, taking a few hints from the biochemistry of cyclin-dependent kinases (the master regulators of the eukaryotic cell cycle), we guess what molecular mechanisms must be operating to produce the desired dynamical properties of the control system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldbeter A, Segel LA. Unified mechanism for relay and oscillation of cyclic AMP in Dictyostelium discoideum. Proc Natl Acad Sci USA 1977; 74:1543–1547.

    Article  PubMed  CAS  Google Scholar 

  2. Bray D, Bourret RB, Simon MI. Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Mol Biol Cell 1993; 4:469–482.

    PubMed  CAS  Google Scholar 

  3. Arkin A, Ross J, McAdams HH. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 1998; 149:1633–1648.

    PubMed  CAS  Google Scholar 

  4. Novak B, Tyson JJ. Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J Cell Sci 1993; 106:1153–1168.

    PubMed  CAS  Google Scholar 

  5. Forger DB, Peskin CS. A detailed predictive model of the mammalian circadian clock. Proc Natl Acad Sci USA 2003; 100:14806–14811.

    Article  PubMed  CAS  Google Scholar 

  6. Murray A, Hunt T. The Cell Cycle: An Introduction. New York: W.H. Freeman and Co., 1993.

    Google Scholar 

  7. Johnston GC, Pringle JR, Hartwell LH. Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp Cell Res 1977; 105:79–98.

    Article  PubMed  CAS  Google Scholar 

  8. Cooper S. A unifying model for the G1 period in prokaryotes and eukaryotes. Nature 1979; 280:17–19.

    Article  PubMed  CAS  Google Scholar 

  9. Tyson JJ. The coordination of cell growth and division—Intentional or incidental? Bioessays 1985; 2:72–77.

    Article  Google Scholar 

  10. Rupes I. Checking cell size in yeast. Trends Genet 2002; 18:479–485.

    Article  PubMed  CAS  Google Scholar 

  11. Fantes P, Nurse P. Control of cell size at division in fission yeast by a growth-modulated size control over nuclear division. Exp Cell Res 1977; 107:377–386.

    Article  PubMed  CAS  Google Scholar 

  12. Hartwell LH, Weinert TA. Checkpoints: Controls that ensure the order of cell cycle events. Science 1989; 246:629–634.

    Article  PubMed  CAS  Google Scholar 

  13. Murray AW. The genetics of cell cycle checkpoints Curr Biol 1995; 5:5–11.

    CAS  Google Scholar 

  14. Rhind N, Russell P. Mitotic DNA damage and replication checkpoints in yeast. Curr Opin Cell Biol 1998; 10:749–758.

    Article  PubMed  CAS  Google Scholar 

  15. Amon A. The spindle checkpoint. Curr Opin Genet Dev 1999; 9:69–75.

    Article  PubMed  CAS  Google Scholar 

  16. Stern B, Nurse P. A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Genet 1996; 12:345–350.

    Article  PubMed  CAS  Google Scholar 

  17. Tyson JJ, Csikasz-Nagy A, Novak B. The dynamics of cell cycle regulation. Bioessays 2002; 24:1095–1109.

    Article  PubMed  CAS  Google Scholar 

  18. Kuznetsov YA. Elements of Applied Bifurcation Theory. New York: Springer Verlag, 1995.

    Google Scholar 

  19. Strogatz SH. Nonlinear Dynamics and Chaos. Reading: Addison-Wesley Co., 1994.

    Google Scholar 

  20. Draetta G, Luca F, Westendorf J et al. Cdc2 protein kinase is complexed with both cyclin A and B: Evidence for proteolytic inactivation of MPF. Cell 1989; 56:829–838.

    Article  PubMed  CAS  Google Scholar 

  21. Gautier J, Norbury C, Lohka M et al. Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell 1988; 54:433–439.

    Article  PubMed  CAS  Google Scholar 

  22. Felix MA, Labbe JC, Doree M et al. Triggering of cyclin degradation in interphase extracts of amphibian eggs by cdc2 kinase. Nature 1990; 346:379–382.

    Article  PubMed  CAS  Google Scholar 

  23. Coleman TR, Dunphy WG. Cdc2 regulatory factors. Curr Opin Cell Biol 1994; 6:877–882.

    Article  PubMed  CAS  Google Scholar 

  24. Griffith JS. Mathematics of cellular control processes. I. Negative freedback to one gene. J Theor Biol 1968; 20:202–208.

    Article  PubMed  CAS  Google Scholar 

  25. Goldbeter A, Koshland Jr DE. An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci USA 1981; 78:6840–6844.

    Article  PubMed  CAS  Google Scholar 

  26. Cross FR, Archambault V, Miller M et al. Testing a mathematical model for the yeast cell cycle. Mol Biol Cell 2002; 13:52–70.

    Article  PubMed  CAS  Google Scholar 

  27. Sha W, Moore J, Chen K et al. Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc Natl Acad Sci USA 2003; 100:975–980.

    Article  PubMed  CAS  Google Scholar 

  28. Pomerening JR, Sontag ED, Ferrell Jr JE. Building a cell cycle oscillator: Hysteresis and bistability in the activation of Cdc2. Nat Cell Biol 2003; 5:346–351.

    Article  PubMed  CAS  Google Scholar 

  29. Csikasz-Nagy A Battogtokh D, Chen KC et al. Analysis of a generic model of eukaryotic cell-cycle regulation. Biophys J 2006; 90(12):4361–4379.

    Article  PubMed  CAS  Google Scholar 

  30. Tyson JJ, Novak B. Regulation of the eukaryotic cell cycle: Molecular antagonism, hysteresis and irreversible transitions. J Theor Biol 2001; 210:249–263.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Csikász-Nagy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Csikász-Nagy, A., Novák, B., Tyson, J.J. (2008). Reverse Engineering Models of Cell Cycle Regulation. In: Maroto, M., Monk, N.A.M. (eds) Cellular Oscillatory Mechanisms. Advances in Experimental Medicine and Biology, vol 641. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09794-7_7

Download citation

Publish with us

Policies and ethics