Skip to main content

Oscillatory Expression of Hes Family Transcription Factors: Insights from Mathematical Modelling

  • Chapter
Cellular Oscillatory Mechanisms

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 641))

Abstract

Oscillatory expression of the Hes family of transcription factors plays a central role in the segmentation of the vertebrate body during embryonic development. Analogous oscillations in cultured cells suggest that Hes oscillations may be important in other developmental processes, and provide an excellent opportunity to explore the origin of these oscillations in a relatively simple setting. Mathematical and computational modelling have been used in combination with quantitative mRNA and protein expression data to analyse the origin and properties of Hes oscillations, and have highlighted the important roles played by time delays in negative feedback circuits. In this chapter, we review recent theoretical and experimental results, and discuss how analysis of existing models suggests potential avenues for further study of delayed feedback oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Freeman M. Feedback control of intercellular signalling in development. Nature 2000; 408:313–319.

    Article  PubMed  CAS  Google Scholar 

  2. Mahaffy JM, Pao CV. Models of genetic control by repression with time delays and spatial effects. J Math Biol 1984; 20:39–57.

    Article  PubMed  CAS  Google Scholar 

  3. Mahaffy JM. Genetic control models with diffusion and delays. Math Biosci. 1988; 90:519–533.

    Article  Google Scholar 

  4. Csikász-Nagy A, Novák B, Tyson JJ. Reverse engineering models of cell cycle regulation. In: Maroto M, Monk NAM. Cellular Oscillatory Mechanisms. Austin: Landes Bioscience, 2008.

    Google Scholar 

  5. Rougemont J, Naef F. Stochastic phase oscillator models for circadian clocks. In: Maroto M, Monk NAM. Cellular Oscillatory Mechanisms. Austin: Landes Bioscience, 2008.

    Google Scholar 

  6. Hoffmann A, Levchenko A, Scott ML et al. The IκB-NF-κB signaling module: Temporal control and selective gene activation. Science 2002; 298:1241–1245

    Article  PubMed  CAS  Google Scholar 

  7. Nelson DE, Ihekwaba AEC, Elliott M et al. Oscillations in NF-κB signaling control the dynamics of gene expression. Science 2004; 306:704–708.

    Article  PubMed  CAS  Google Scholar 

  8. Lev Bar-Or R, Maya R, Segel LA et al. Generation of oscillations by the p53-Mdm2 feedback loop: A theoretical and experimental study. Proc Natl Acad Sci USA 2000; 97:11250–11255

    Article  PubMed  CAS  Google Scholar 

  9. Lahav G, Rosenfeld N, Sigal A et al. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet 2004; 36:147–150.

    Article  PubMed  CAS  Google Scholar 

  10. Lahav G. Oscillations by the p53-Mdm2 feedback loop. In: Maroto M, Monk NAM. Cellular Oscillatory Mechanisms. Austin: Landes Bioscience, 2008.

    Google Scholar 

  11. Hirata H, Yoshiura S, Ohtsuka T et al. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 2002; 298:840–843.

    Article  PubMed  CAS  Google Scholar 

  12. Masamizu Y, Ohtsuka T, Takashima Y et al. Real-time imaging of the somite segmentation clock: Revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc Natl Acad Sci USA 2006; 103:1313–1318.

    Article  PubMed  CAS  Google Scholar 

  13. William DA, Saitta B, Gibson JD et al. Identification of oscillatory genes in somitogenesis from functional genomic analysis of a human mesenchymalstem cell model. Dev Biol 2007; 305:172–186.

    Article  PubMed  CAS  Google Scholar 

  14. Uptain SM, Kane CM, Chamberlin MJ. Basic mechanisms of transcript elongation and its regulation. Annu Rev Biochem 1997; 66:117–172.

    Article  PubMed  CAS  Google Scholar 

  15. Darzacq X, Singer RH, Shav-Tal Y. Dynamics of transcription and mRNA export. Curr Opin Cell Biol 2005; 17:332–339.

    Article  PubMed  CAS  Google Scholar 

  16. Audibert A, Weil D, Dautry F. In vitro kinetics of mRNA splicing and transport in mammalian cells. Mol Cell Biol 2002; 22:6706–6718.

    Article  PubMed  CAS  Google Scholar 

  17. Lewin B. Genes VII. Oxford: Oxford University Press, 2000.

    Google Scholar 

  18. Tennyson CN, Klamut HJ, Worton RG. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet 1995; 9:184–190.

    Article  PubMed  CAS  Google Scholar 

  19. Alberts B, Johnson A, Lewis J et al. Molecular Biology of the Cell. 4th ed. New York: Garland/Taylor and Francis, 2002.

    Google Scholar 

  20. Tiana G, Jensen MH, Sneppen K. Time delay is a key to apoptosis induction in the p53 network. Eur Phys J B 2002; 29:135–140.

    Article  CAS  Google Scholar 

  21. Jensen MH, Sneppen K, Tiana G. Sustained oscillations and time delays in gene expression of protein Hes1. FEBS Lett 2003; 541:176–177.

    Article  PubMed  CAS  Google Scholar 

  22. Monk NAM. Oscillatory expression of Hes1, p53, and NF-κB driven by transcriptional time delays. Curr Biol 2003; 13:1409–1413.

    Article  PubMed  CAS  Google Scholar 

  23. Davis RL, Turner DL. Vertebrate hairy and Enhancer of split related proteins: Transcriptional repressors regulating cellular differentiation and embryonic patterning. Oncogene 2001; 20:8342–8357.

    Article  PubMed  CAS  Google Scholar 

  24. Kageyama R, Ohtsuka T, Kobayashi T. The Hes gene family: Repressors and oscillators that orchestrate embryogenesis. Development 2007 134:1243–1251.

    Article  PubMed  CAS  Google Scholar 

  25. Palmeirim I, Henrique D, Ish-Horowicz D et al. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 1997 91:639–648.

    Article  PubMed  CAS  Google Scholar 

  26. Bessho Y, Sakata R, Komatsu S et al. Dynamic expression and essential functions of Hes7 in somite segmentation. Genes Dev 2001; 15:2642–2647.

    Article  PubMed  CAS  Google Scholar 

  27. Bessho Y, Hirata H, Masamizu Y et al. Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock. Genes Dev 2003; 17:1451–1456.

    Article  PubMed  CAS  Google Scholar 

  28. Hirata H, Bessho Y, Kokubu H et al. Instability of Hes7 protein is crucial for the somite segmentation clock. Nat Genet 2004; 36:750–754.

    Article  PubMed  CAS  Google Scholar 

  29. Holley SA, Julich D, Rauch GJ et al. Her1 and the Notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development 2002; 129:1175–1183.

    PubMed  CAS  Google Scholar 

  30. Oates AC, Ho RK. Hairy/E(spl)-related (Her) genes are central components of the segmentation oscillator and display redundancy with the Delta/Notch signalling pathway in the formation of anterior segmental boundaries in the zebrafish. Development 2002; 129:2929–2946.

    PubMed  CAS  Google Scholar 

  31. Pasini A, Jiang YJ, Wilkinson DG. The zebrafish Hairy/Enhancer-of-split-related genes, her6 and her4, are required to maintain the coordination of cyclic gene expression in the presomitic mesoderm. Development 2004; 131:1529–1541.

    Article  PubMed  CAS  Google Scholar 

  32. Palmeirim I, Rodrigues S, Dale JK, Maroto M. Development on Time. In: Maroto M, Monk NAM. Cellular Oscillatory Mechanisms. Austin: Landes Bioscience, 2008.

    Google Scholar 

  33. Takebayashi K, Sasai Y, Sakai Y et al. Structure, chromosomal locus, and promoter analysis of the gene encoding the mouse helix-loop-helix factor Hes-1. J Biol Chem 1994; 269:5150–5156.

    PubMed  CAS  Google Scholar 

  34. Dequéant ML, Glynn E, Gaudenz K et al. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 2006; 314:1595–1598.

    Article  PubMed  Google Scholar 

  35. Lewis J. Autoinhibition with transcriptional delay: A simple mechanism for the zebrafish somitogenesis oscillator. Curr Biol 2003; 13:1398–1408.

    Article  PubMed  CAS  Google Scholar 

  36. Verdugo A, Rand R. Hopf bifurcation in a DDE model of gene expression. Commun Nonlinear Sci Numer Simulat 2006, (doi:10.1016/j.cnsns.2006.05.001).

    Google Scholar 

  37. Buchler NE, Gerland U, Hwa T. Nonlinear protein degradation and the function of genetic circuits. Proc Natl Acad Sci USA 2005; 102:9559–9564.

    Article  PubMed  CAS  Google Scholar 

  38. Nuthall HN, Husain J, McLarren KW et al. Role for Hes1-induced phosphoryllation in Groucho-mediated transcriptional repression. Mol Cell Biol 2002; 22:389–399.

    Article  PubMed  CAS  Google Scholar 

  39. Bernard S, Cajavec B, Pujo-Menjouet L et al. Modelling transcriptional feedback loops: The role of Gro/TLE1 in Hes1 oscillations. Phil Trans R Soc A 2006; 364:1155–1170.

    Article  PubMed  CAS  Google Scholar 

  40. Zeiser S, Liebscher HV, Tiedemann H et al. Number of active transcription factor binding sites is essential for the Hes7 oscillator. Theor Biol Med Modelling 2006; 3:11.

    Article  Google Scholar 

  41. Cinquin O. Repressor dimerization in the zebrafish somitogenesis clock. PLoS Comput Biol 2007; 3(2):e32.

    Article  PubMed  Google Scholar 

  42. McKane AJ, Nagy JD, Newman TJ et al. Amplified biochemical oscillations in cellular systems. J Stat Phys 2007, (in press).

    Google Scholar 

  43. Barrio M, Burrage K, Leier A et al. Oscillatory regulation of Hes1: Discrete stochastic delay modelling and simulation. PLoS Comput Biol 2006; 2(9):e117.

    Article  PubMed  Google Scholar 

  44. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J Phys Chem 1997; 81:2340–2361.

    Article  Google Scholar 

  45. Horikawa K, Ishimatsu K, Yoshimoto E et al. Noise-resistant and synchronized oscillation of the segmentation clock. Nature 2006; 441:719–723.

    Article  PubMed  CAS  Google Scholar 

  46. Rateitschak K, Wolkenhauer O. Intracellular delay limits cyclic changes in gene expression. Math Biosci 2007; 205:163–179.

    Article  PubMed  CAS  Google Scholar 

  47. Ihekwaba AEC, Broomhead DS, Grimley RL et al. Sensitivity analysis of parameters controlling oscillatory signalling in the NF-κB pathway: The roles of IKK and IκBα. Syst Biol 2004; 1:93–103.

    Article  CAS  Google Scholar 

  48. Mincheva M, Roussel M. Graph-theoretic methods for the analysis of chemical and biochemical networks. II. Oscillations in networks with delays. J Math Biol 2007; 55:87–104.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Momiji, H., Monk, N.A. (2008). Oscillatory Expression of Hes Family Transcription Factors: Insights from Mathematical Modelling. In: Maroto, M., Monk, N.A.M. (eds) Cellular Oscillatory Mechanisms. Advances in Experimental Medicine and Biology, vol 641. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09794-7_6

Download citation

Publish with us

Policies and ethics