Skip to main content

Oscillations by the p53-Mdm2 Feedback Loop

  • Chapter
Cellular Oscillatory Mechanisms

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 641))

Abstract

The p53 network is perhaps the most important pathway involved in preventing the initiation of cancer. p53 levels and activity are upregulated in response to various, stresses including DNA damage, hypoxia, and oncogene activation. Active p53 initiates different transcriptional programs that result in cell cycle arrest, cellular senescence or apoptosis. p53 also activates the transcription of Mdm2, which in turns target p53 for degradation, therefore creating a negative feedback loop on p53. Previous studies showed that the level of p53 increased dramatically after exposure to damaging radiation, then declined in a series of damped oscillations. Recent quantitative studies examined p53 responses in individual living cells, using time-lapse fluorescent microscopy and showed that—on an individual cell level—the oscillations are not damped. Instead one cell may have only one pulse of p53, while its neighbor may show several repeated pulses. As the amount of irradiation increased, the percentage of cells showing a high number of p53 pulses also increased. The mean height and width of the pulses was constant and did not depend on the damage level. These observations opened new questions regarding the mechanism and function of p53 oscillatory dynamics. In this chapter I will review the different models that have been suggested for p53 oscillations, including proposed reasons for variation between cells, and will discuss potential functions for oscillatory dynamics in the p53 signaling pathway and in stress responses in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997; 88(3):323–331.

    Article  PubMed  CAS  Google Scholar 

  2. Jin S, Levine AJ. The p53 functional circuit. J Cell Sci 2001; 114(Pt 23): 4139–4140.

    PubMed  CAS  Google Scholar 

  3. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000; 408(6810):307–310.

    Article  PubMed  CAS  Google Scholar 

  4. Hofseth LJ, Hussain SP, Harris CC. p53: 25 years after its discovery. Trends Pharmacol Sci 2004; 25(4):177–181.

    Article  PubMed  CAS  Google Scholar 

  5. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003; 421(6922):499–506.

    Article  PubMed  CAS  Google Scholar 

  6. Barak Y, Juven T, Haffner, R et al. Mdm2 expression is induced by wild type p53 activity. EMBO J 1993; 12(2):461–468.

    PubMed  CAS  Google Scholar 

  7. Wu X, Bayle JH, Olson D et al. The p53-mdm-2 autoregulatory feedback loop. Genes Dev 1993; 7(7A):1126–1132.

    Article  PubMed  CAS  Google Scholar 

  8. Haupt Y, Maya R, Kazaz A et al. Mdm2 promotes the rapid degradation of p53. Nature 1997; 387(6630):296–299.

    Article  PubMed  CAS  Google Scholar 

  9. Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997; 387(6630):299–303.

    Article  PubMed  CAS  Google Scholar 

  10. Michael D, Oren M. The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 2003; 13(1):49–58.

    Article  PubMed  CAS  Google Scholar 

  11. Harris SL, Levine AJ. The p53 pathway: Positive and negative feedback loops. Oncogene 2005; 24(17):2899–2908.

    Article  PubMed  CAS  Google Scholar 

  12. Dornan D, Wertz I, Shimizu H et al. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 2004; 429(6987):86–92.

    Article  PubMed  CAS  Google Scholar 

  13. Leng RP, Lin Y, Ma W et al. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 2003; 112(6):779–791.

    Article  PubMed  CAS  Google Scholar 

  14. Yeger-Lotem E, Sattath S, Kashtan N et al. Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc Natl Acad Sci USA 2004; 101(16):5934–5939.

    Article  PubMed  CAS  Google Scholar 

  15. Tyson JJ. Monitoring p53’s pulse. Nat Genet 2004; 36(2):113–114.

    Article  PubMed  CAS  Google Scholar 

  16. Tyson JJ, Chen KC, Novak B. Sniffers, buzzers, toggles and blinkers: Dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 2003; 15(2):221–231.

    Article  PubMed  CAS  Google Scholar 

  17. Nelson DE, Ihekwaba AEC, Elliott M et al. Oscillations in NF-{kappa} B signaling control the dynamics of gene expression. Science 2004; 306(5696):704–708.

    Article  PubMed  CAS  Google Scholar 

  18. Hoffmann A, Levchenko A, Scott ML et al. The IkB-NF-kB signaling module: Temporal control and selective gene activation. Science 2002; 298:1241–1245.

    Article  PubMed  CAS  Google Scholar 

  19. Lev Bar-Or R, Maya R, Segel LA et al. Generation of oscillations by the p53-Mdm2 feedback loop: A theoretical and experimental study. Proc Natl Acad Sci USA 2000; 97(21):11250–11255.

    Article  PubMed  CAS  Google Scholar 

  20. Lahav G, Rosenfeld N, Sigal A et al. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet 2004; 36(2):147–150.

    Article  PubMed  CAS  Google Scholar 

  21. Tyson JJ. Another turn for p53. Mol Syst Biol 2006; 2:0032.

    Article  PubMed  Google Scholar 

  22. Hamstra DA, Bhojani MS, Griffin LB et al. Real-time evaluation of p53 oscillatory behavior in vivo using bioluminescent imaging. Cancer Res 2006; 66(15):7482–7489.

    Article  PubMed  CAS  Google Scholar 

  23. Mihalas GI, Simon Z, Balea G et al. Possible oscillatory behavior in p53-Mdm2 interaction computer simulation. Journal of Biological Systems 2000; 8:21–29.

    Google Scholar 

  24. Monk NAM. Oscillatory expression of Hes1, p53, and NF-κB driven by transcriptional time delays. Curr Biol 2003; 13(16):1409–1413.

    Article  PubMed  CAS  Google Scholar 

  25. Tiana G, Jensen MH, Sneppen K. Time delay is a key to apoptosis induction in the p53 network. European Physical Journal B 2002; 29:135–140.

    Article  CAS  Google Scholar 

  26. Ma L, Wagner J, Rice JJ et al. A plausible model for the digital response of p53 to DNA damage. Proc Natl Acad Sci USA 2005; 102(40):14266–14271.

    Article  PubMed  CAS  Google Scholar 

  27. Wagner J, Ma L, Rice JJ et al. p53-Mdm2 loop controlled by a balance of its feedback strength and effective dampening using ATM and delayed feedback. IEEE Proc.-Syst Biol 2005; 152(3):109–118.

    Article  CAS  Google Scholar 

  28. Ciliberto A, Novak B, Tyson JJ. Steady states and oscillations in the p53/Mdm2 network. Cell Cycle 2005; 4(3):488–493.

    PubMed  CAS  Google Scholar 

  29. Pomerening JR, Kim SY, Ferrell Jr JE. Systems-level dissection of the cell-cycle oscillator: Bypassing positive feedback produces damped oscillations. Cell 2005; 122(4):565–578.

    Article  PubMed  CAS  Google Scholar 

  30. Mayo LD, Dixon JE, Durden DL et al. PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. J Biol Chem 2002; 277(7):5484–5489.

    Article  PubMed  CAS  Google Scholar 

  31. Martoriati A, Doumont G, Alcalay M et al. dapk1, encoding an activator of a p19ARF-p53-mediated apoptotic checkpoint, is a transcription target of p53. Oncogene 2005; 24(8):1461–1466.

    Article  PubMed  CAS  Google Scholar 

  32. Deguin-Chambon V, Vacher M, Jullien M et al. Direct transactivation of c-Ha-Ras gene by p53 Evidence for its involvement in p53 transactivation activity and p53-mediated apoptosis. Oncogene 2000; 19(51):5831–5841.

    Article  PubMed  CAS  Google Scholar 

  33. Ongusaha PP, Kim JI, Fang L et al. p53 induction and activation of DDR1 kinase counteract p53-mediated apoptosis and influence p53 regulation through a positive feedback loop. EMBO J 2003; 22(6):1289–1301.

    Article  PubMed  CAS  Google Scholar 

  34. Geva-Zatorsky N, Rosenfeld N, Itzkovitz S et al. Oscillations and variability in the p53 system. Molecular Systems Biology 2006; 2:E1–E13.

    Article  Google Scholar 

  35. Camman CE, Lim DS, Gimprich KA et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 1998; 281(5383):1677–1679.

    Article  Google Scholar 

  36. Canman CE, Lim DS. The role of ATM in DNA damage responses and cancer. Oncogene 1998; 17(25):3301–3308.

    Article  PubMed  Google Scholar 

  37. Khosravi R, Maya R, Gottlieb T et al. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci USA 1999; 96(26):14973–14977.

    Article  PubMed  CAS  Google Scholar 

  38. Okamoto K, Kamibayashi C, Serrano M et al. p53-dependent association between cyclin G and the B’ subunit of protein phosphatase 2A. Mol Cell Biol 1996; 16(11):6593–6602.

    PubMed  CAS  Google Scholar 

  39. Ohtsuka T, Jensen MR, Kim HG, et al. The negative role of cyclin G in ATM-dependent p53 activation. Oncogene 2004; 23(31):5405–5408.

    Article  PubMed  CAS  Google Scholar 

  40. Goodarzi AA, Jonnalagadda JC, Douglas P et al. Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. EMBO J 2004; 23(22):4451–4461.

    Article  PubMed  CAS  Google Scholar 

  41. Reimer CL, Borras AM, Kurdistani SK et al. Altered regulation of cyclin G in human breast cancer and its specific localization at replication foci in response to DNA damage in p53+/+ cells. J Biol Chem 1999; 274(16):11022–11029.

    Article  PubMed  CAS  Google Scholar 

  42. Fiscella M, Zhang H, Fan S et al. Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci USA 1997; 94(12):6048–6053.

    Article  PubMed  CAS  Google Scholar 

  43. Lu X, Nannenga B, Donehower LA. PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev 2005; 19(10):1162–1174.

    Article  PubMed  CAS  Google Scholar 

  44. Fujimoto H, Onishi N, Kato N et al. Regulation of the antioncogenic Chk2 kinase by the oncogenic Wip1 phosphatase. Cell Death Differ 2005.

    Google Scholar 

  45. Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses. Proc Natl Acad Sci USA 2003; 100(9):5057–5062.

    Article  PubMed  CAS  Google Scholar 

  46. Lahav G. The strength of indecisiveness: Oscillatory behavior for better cell fate determination. Sci STKE 2004; 2004(264):pe55.

    Article  PubMed  Google Scholar 

  47. Komiyama S, Taniguchi S, Matsumoto Y et al. Potentiality of DNA-dependent protein kinase to phosphorylate Ser46 of human p53. Biochem Biophys Res Commun 2004; 323(3):816–822.

    Article  PubMed  CAS  Google Scholar 

  48. Oda K, Arakawa H, Tanaka T et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 2000; 102(6):849–862.

    Article  PubMed  CAS  Google Scholar 

  49. Mayo LD, Seo YR, Jackson MW et al. Phosphorylation of human p53 at serine 46 determines promoter selection and whether apoptosis is attenuated or amplified. J Biol Chem 2005; 280(28):25953–25959.

    Article  PubMed  CAS  Google Scholar 

  50. Nelson DE, See V, Nelson G et al. Oscillations in transcription factor dynamics: A new way to control gene expression. Biochem Soc Trans 2004; 32(Pt 6):1090–1092.

    PubMed  CAS  Google Scholar 

  51. Friedman N, Vardi S, Ronen M et al. Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria. PLoS Biol 2005; 3(7):e238.

    Article  PubMed  Google Scholar 

  52. Bond GL, Hu W, Bond EE et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 2004; 119(5):591–602.

    Article  PubMed  CAS  Google Scholar 

  53. Bond GL, Hu W, Levine A. A single nucleotide polymorphism in the MDM2 gene: From a molecular and cellular explanation to clinical effect. Cancer Res 2005; 65(13):5481–5484.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Lahav, G. (2008). Oscillations by the p53-Mdm2 Feedback Loop. In: Maroto, M., Monk, N.A.M. (eds) Cellular Oscillatory Mechanisms. Advances in Experimental Medicine and Biology, vol 641. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09794-7_2

Download citation

Publish with us

Policies and ethics