Skip to main content

Abstract

Advances in high-throughput technologies such as gene and protein expression microarrays in the past decade have made it possible to simultaneously measure the expression levels of thousands of transcripts. This has resulted in large amounts of biological data requiring analysis and interpretation. Many methods for handling such large-scale data have been proposed in the literature. For example, consider a p ×n gene expression matrix V consisting of observations on p genes from n samples representing different experimental conditions, phenotypes or time points. One could be interested in identifying clusters of genes with similar expression profiles across sub-groups of samples. Typically, this is accomplished via a decomposition of V into two or more matrices where each factored matrix has a distinct physical interpretation. Matrix decompositions have been successfully utilized in a variety of applications in computational biology such as molecular pattern discovery, class comparison, class prediction, functional characterization of genes, cross-platform and cross-species analysis, and biomedical informatics. In this chapter, we focus on available and commonly utilized methods for such matrix decompositions as well as survey other potentially useful methods for analyzing highdimensional data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References 14

  1. Abdallah, E. E., Hamza, A. B. and Bhattacharya, P.: MPEG video watermarking using tensor singular value decomposition, in Image Analysis and Recognition, vol. 4633 of Lecture Notes in Computer Science Springer, pp. 772-783 (2007)

    Google Scholar 

  2. Acar, E., Camtepe, S. A. and Yener, B.: Collective sampling and analysis of high order tensors for chatroom communications, in ISI 2006: Proceedings of the IEEE International Conference on Intelligence and Security Informatics, vol. 3975 of Lecture Notes in Computer Science—, Springer, pp. 213-224 (2006)

    Google Scholar 

  3. Acar, E., Camtepe, S. A., Krishnamoorthy, M. S. and Yener, B.: Modeling and multiway analysis of chatroom tensors, in ISI 2005: Proceedings of the IEEE International Conference on Intelligence and Security Informatics, vol. 3495 of Lecture Notes in Computer Science Springer, pp. 256-268 (2005)

    Google Scholar 

  4. Alter, O., Brown, P.O., Botstein, D.: Singular value decomposition for genoe-wide expression data processing and modeling, Proceedings of the National Academy of Sciences 97(18):10101-10106. (2000)

    Article  Google Scholar 

  5. Andersen, C. M. and Bro, R.:Practical aspects of PARAFAC modeling of fluorescence excitation-emission data, Journal of Chemometrics 17, pp. 200-215 (2003)

    Article  Google Scholar 

  6. Appellof, C. J., and Davidson, E. R.: Strategies for analyzing data from video fluorometric monitoring of liquid chromatographic effuents, Analytical Chemistry 53, pp. 2053-2056(1981)

    Article  Google Scholar 

  7. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene Ontology: tool for the unification of biology. The Gene Ontology Consortium, Nature Genetics 25(1):25-29(2000)

    Google Scholar 

  8. Bader, B. W., Berry, M. W., and Browne, M.: Discussion tracking in enron email using PARAFAC, in Survey of Text Mining: Clustering, Classification, and Retrieval Second Edition, M. W. Berry and M. Castellanos, eds., Springer, pp.147-162 (2007)

    Google Scholar 

  9. Bair, E., Hastie, T., Paul, D., Tibshirani, R.: Prediction by supervised principal components. Journal of the American Statistical Association, 101:119 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bauckhage, C.: Robust tensor classifiers for color object recognition, in Image Analysis and Recognition, vol. 4633 of Lecture Notes in Computer Science Springer, pp. 352-363 (2007)

    Google Scholar 

  11. Behnke, S.: Discovering hierarchical speech features using convolutional non-negative matrix factorization, Proceedings of the International Joint Conference on Neural Networks vol. 4, pp. 2758-2763, Portland, Oregon, USA (2003)

    Google Scholar 

  12. Brunet, J-P., Tamayo, P., Golub, T., Mesirov, J.: Metagenes and molecular pattern discovery using nonnegative matrix factorization, Proceedings of the National Academy of Sciences USA 101: 4164-4169 (2004)

    Article  Google Scholar 

  13. Buchsbaum, G., Bloch, O.: Color Categories Revealed by Non-negative Matrix Factorization of Munsell Color Spectra, Vision Research 42, 559-563 (2002)

    Article  Google Scholar 

  14. Buciu, I., Pitas, I.: Application of non-negative and local non negative matrix factorization to facial expression recognition, Proceedings of the 17th International Conference on Pattern Recognition vol. 1, pp. 288-291, Cambridge, UK (2004)

    Google Scholar 

  15. Cardoso, J-F., http://www.tsi.enst.fr/~cardodo/icacentral

  16. Carmona-Saez, P., Pascual-Marqui, R.D., Tirado, F., Carazo, J.M., Pascual-Montano, A.: Biclustering of gene expression data by non-smooth non-negative matrix factorization, BMC Bioinformatics 7:78 (2006)

    Article  Google Scholar 

  17. Carrasco, D.R., Tonon, G., Huang, Y., Zhang, Y., Sinha, R. et al : High resolution genomic profiles define distinct clinico-pathogenic subgroups of multiple myeloma patients, Cancer Cell 9:313-325 (2006)

    Article  Google Scholar 

  18. Carroll, J. D., Pruzansky, S. and Kruskal, J. B.: CANDELINC: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters, Psychometrika 45, pp. 324 (1980)

    MathSciNet  Google Scholar 

  19. Carroll, J. D. and Chang, J. J.: Analysis of individual differences in multidimensional scaling via an N-way generalization of ’Eckart-Young’ decomposition, Psychometrika 35, pp. 283-319 (1970)

    Article  MATH  Google Scholar 

  20. Cattell, R. B.: Parallel proportional profiles and other principles for determining the choice of factors by rotation, Psychometrika 9, pp. 267283 (1944)

    Google Scholar 

  21. Cattell, R. B.: The three basic factor-analytic research designs - their interrelations and derivatives, Psychological Bulletin 49, pp. 499-452 (1952)

    Article  Google Scholar 

  22. Chagoyen, M., Carmona-Saez, P., Shatkay, H., Carazo, J.M., Pascual-Montano, A.: Discovering semantic features in the literature: a foundation for building functional associations, BMC Bioinformatics 7:41 (2006)

    Article  Google Scholar 

  23. Chen, X., Gu, L., Li, S-Z., Zhang, H-J.: Learning representative local features for face detection, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition vol. 1, pp. I-1126-I-1131, Kauai, Hawaii, USA (2001)

    Google Scholar 

  24. Cho, Y-C., Choi, S., Bang, S-Y.: Non-negative component parts of sound for classification, Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology pp. 633-636, Darmstadt, Germany (2003)

    Google Scholar 

  25. Cooper, M., Foote, J.: Summarizing video using nonnegative similarity matrix factorization, Proceedings of the IEEE Workshop on Multimedia Signal Processing pp. 25-28, St.Thomas, Virgin Islands, USA (2002)

    Google Scholar 

  26. De Lathauwer, L. and Castaing, J.: Tensor-based techniques for the blind separation of DSCDMA signal, Signal Processing, 87, pp. 322-336 (2007)

    Article  MATH  Google Scholar 

  27. Devarajan, K., Ebrahimi, N.: Class discovery via nonnegative matrix factorization, American Journal of Management and Mathematical Sciences, 28(3&4):457-467 (2008)

    MATH  Google Scholar 

  28. Devarajan, K., Ebrahimi, N.:Molecular pattern discovery using non-negative matrix factorization based on Renyi’s information measure, Proceedings of the XII SCMA InternationalConference, Auburn University, Auburn, Alabama (2005); http://atlas-conferences.com/c/a/q/t/98.htm

    Google Scholar 

  29. Devarajan, K., Wang, G., Ebrahimi, N.: A generalized approach to non-negative matrix factorization with applications, Technical Report, Division of Population Science, Fox Chase Cancer Center, 2009

    Google Scholar 

  30. Devarajan, K., Wang, G.: Parallel implementation of non-negative matrix factorization algorithms using high-performance computing cluster, Proceedings of the 39th Symposium on the Interface: Computing Science and Statistics, Theme: Systems Biology, Temple University, Philadelphia, Pennsylvania (2007). Available at http://sbm.temple.edu/interface07/

    Google Scholar 

  31. Devarajan, K.: Nonnegative matrix factorization - A new paradigm for large-scale biological data analysis, Proceedings of the Joint Statistical Meetings, Seattle, Washington (2006)

    Google Scholar 

  32. Devarajan, K.: Nonnegative matrix factorization: An analytical and interpretive tool in computational biology. PLoS Computational Biology, 4(7), July (2008)

    Article  Google Scholar 

  33. Dietterich, T. G., Becker, S. and Ghahramani, Z. (Eds.).: Advances in neural information processing systems, 14:897-904, MIT Press, Cambridge, MA, USA (2002)

    Google Scholar 

  34. Donoho, D., Stodden, V.: When does nonnegative matrix factorization give a correct decomposition into parts?, Advances in neural Information Processing Systems 16, MIT Press (2003)

    Google Scholar 

  35. Feng, T., Li, S-Z., Shum, H-Y., and Zhang, H-Y.: Local nonnegative matrix factorization as a visual representation, Proceedings of the 2nd International Conference on Development and Learning, pp. 178-183, Cambridge, Massachusetts, USA (2001)

    Google Scholar 

  36. FitzGerald, D., Cranitch, M. and Coyle, E.: Non-negative tensor factorisation for sound source separation, in ISSC 2005: Proceedings of the Irish Signals and Systems Conference (2005)

    Google Scholar 

  37. Fodor, I.K.: A survey of dimension reduction methods. LLNL technical report. UCRL-ID 148494 (2002)

    Google Scholar 

  38. Fogel, P., Young, S.S., Hawkins, D.M., Ledirac, N.: Bioinformatics, Inferential, robust nonnegative matrix factorization analysis of microarray data, 23(1):44-49 (2007)

    Google Scholar 

  39. Furukawa, R., Kawasaki, H., Ikeuchi, K., and Sakauchi, M.: Appearance based object modeling using texture database: acquisition, compression and rendering, in EGRW’02: Proceedings of the 13th Eurographics workshop on Rendering, Airela-Ville, Switzerland, Switzerland, Eurographics Association, pp. 257-266 (2002)

    Google Scholar 

  40. Gao, Y., Church, G.: Improving molecular cancer class discovery through sparse non-negative matrix factorization, Bioinformatics, 21(21):3970-3975 (2005)

    Article  Google Scholar 

  41. Garcia, R. and Lumsdaine, A.: MultiArray: A C++ library for generic programming with arrays, Software: Practice and Experience, 35, pp. 159-188 (2004)

    Article  Google Scholar 

  42. Girolami, M.: Advances in Independent Component Analysis. Perspectives in Neural Computing, Springer (2000)

    Google Scholar 

  43. Guillamet, D., Vitri’a, J., Schiele, B.: Introducing a weighted non-negative matrix factorization for image classification, Pattern Recognition Letters, vol. 24, no. 14, pp. 2447-2454 (2003)

    Article  MATH  Google Scholar 

  44. Guillamet, D., Vitri’a, J.: Evaluation of distance metrics for recognition based on non-negative matrix factorization, Pattern Recognition Letters, vol. 24, no. 9-10, pp. 1599-1605 (2003)

    Article  MATH  Google Scholar 

  45. Guillamet, D., Vitri’a, J.: Discriminant basis for object classification, Proceedings of the 11th International Conference on Image Analysis and Processing, pp. 256-261, Palermo, Italy (2001)

    Google Scholar 

  46. Harshman, R. A. and Lundy, M. E.: Uniqueness proof for a family of models sharing features of Tucker’s three-mode factor analysis and PARAFAC and CANDECOMP, Psychometrika, 61, pp. 133-154 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  47. Harshman, R. A.: Foundations of the PARAFAC procedure: Models and conditions for an ”explanatory” multi-modal factor analysis, UCLA working papers in phonetics, 16, pp. 184 (1970). Available at http://publish.uwo.ca/harshman/wpppfac0.pdf

    Google Scholar 

  48. Harshman, R. A.: Models for analysis of asymmetrical relationships among N objects or stimuli, in First Joint Meeting of the Psychometric Society and the Society for Mathematical Psychology, McMaster University, Hamilton, Ontario, August (1978) Available at http://publish.uwo.ca/harshman/asym1978.pdf

    Google Scholar 

  49. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning. Springer-Verlag, New York (2001)

    MATH  Google Scholar 

  50. Hazan, T. Polak, S. and Shashua, A.: Sparse image coding using a 3D nonnegative tensor factorization, in ICCV 2005: Proceedings of the 10th IEEE International Conference on Computer Vision, vol. 1, IEEE Computer Society, pp. 50-57 (2005)

    Google Scholar 

  51. Heger, A., Holm, L.: Sensitive pattern discovery with ’fuzzy’ alignments of distantly related proteins, Bioinformatics, 19(1):i130-i137 (2003)

    Article  Google Scholar 

  52. Hiisila, H., Bingham, E.: Dependencies between Transcription Factor Binding Sites: Comparison between ICA, NMF, PLSA and Frequent Sets, Proceedings of the Fourth IEEE International Conference on Data Mining, 114-121 (2004)

    Google Scholar 

  53. Hitchcock, F. L.: Multiple invariants and generalized rank of a p-way matrix or tensor, Journal of Mathematics and Physics, 7, pp. 39-79 (1927)

    Google Scholar 

  54. Hitchcock, F. L.: The expression of a tensor or a polyadic as a sum of products, Journal of Mathematics and Physics, 6, pp. 164-189 (1927)

    Google Scholar 

  55. Hoyer, P.O.: Nonnegative matrix factorization with sparseness constraints, Journal ofMachine Learning Research, 5:1457-1469 (2004)

    MathSciNet  Google Scholar 

  56. Hoyer, P.O.: Modeling receptive fields with nonnegative sparse coding, Neurocomputing, 52-54:547-552 (2003)

    Article  Google Scholar 

  57. Hoyer, P.O.: Nonnegative sparse coding, Proceedings of the IEEE Workshop on Neural Networks for Signal Processing, Neural Networks for Signal Processing XII, 557-565, Martigny, Switzerland (2002)

    Google Scholar 

  58. HUJI tensor library. http://www.cs.huji.ac.il/~zass/htl/(2006)

  59. Hyvarinen, A., Karhunen, J. and Oja, E.: Independent Component Analysis. Series on Adaptive and Learning Systems for Signal Processing, Communications and Control, Wiley (2001)

    Book  Google Scholar 

  60. Hyvarinen, A.: http://www.cis.hut.fi/~aapo

  61. Hyvarinen, A.: Survey on independent component analysis, Neural Computing Surveys, 2, 94-128 (1999)

    Google Scholar 

  62. Isakoff, M.S., Sansam, C.G., Tamayo, P., Subramanian, A., Evans, J.A., Fillmore, C.M., Wang, X., Biegel, J.A., Pomeroy, S.L., Mesirov, J.P., Roberts, C.S.: Inactivation of the Snf5 tumor suppressor stimulates cell cycle progression and cooperates with p53 loss in oncogenic transformation, Proceedings of the National Academy of Sciences USA, 102:17745:17750(2005)

    Article  Google Scholar 

  63. Jung, I., Lee, J., Kim, H., Lee, S-Y. et al: Improving profile-profile alignment feature for foldrecognition using nonnegative matrix factorization, Proceedings of the Seventh International Conference of the Korean Society for Bioinformatics, 22-27 (2006)

    Google Scholar 

  64. Kelm, B.M., Menze, B.H., Zechmann, C.M., Baudendistel, K.T., Hamprecht, F.A.: Automated estimation of tumor probability in prostate magnetic resonance spectroscopic imaging: pattern recognition vs. quantification, Magnetic Resonance in Medicine, 57:150-159 (2007)

    Article  Google Scholar 

  65. Kim, H., Park, H.: Sparse Non-negative matrix factorizations via alternating non-negativityconstrained least squares, Proceedings of the IASTED International Conference on Computational and Systems Biology, pp. 95-100, Dallas, Texas (2006)

    Google Scholar 

  66. Kim, P., Tidor, B.: Subsystem identification through dimensionality reduction of large-scale gene expression data, Genome Res, 13:1706-1718 (2003)

    Article  Google Scholar 

  67. Kim, S.P., Rao, Y.N., Erdogmus, D., Sanchez, J.C., Nicolelis, M.A.L. et al: Determining patterns in neural activity for reaching movements using nonnegative matrix factorization, EURASIP Journal on Applied Signal Processing, 19:3113-3121 (2005)

    Google Scholar 

  68. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications, SIAM Review, 51(3) (2009)

    Article  MATH  MathSciNet  Google Scholar 

  69. Kossenkov, A.V., Bidaut, G., Ochs, M.F. Genes associated with prognosis in adenocarcinoma across studies at multiple institutions, In K.F. Johnson and S.M. Lin editors, Methods of Microarray Data Analysis IV, p. 239, Kluwer Academic, Boston (2005).

    Chapter  Google Scholar 

  70. Kossenkov, A.V., Bidaut, G., Ochs, M.F. Estimating cellular signaling from transcription data, In K-A Do, P. Muller, M. Vannicci editors, Bayesian Inference for Gene Expression and Proteomics, pp.366-384, Cambridge University Press, New York, (2006).

    Chapter  Google Scholar 

  71. Lawrence J, Rusinkiewicz S, Ramamoorthi R (2004) Efficient BRDF importance sampling using a factored representation,” ACM Transactions on Graphics, 23(3):496-505

    Article  Google Scholar 

  72. Lee, D.D., Seung, S.H.: Algorithms for nonnegative matrix factorization, Advances in Neural Information Processing Systems, 13:556-562 (2001)

    Google Scholar 

  73. Lee, D.D., Seung, S.H.: Learning the parts of objects by nonnegative matrix factorization, Nature, 401:788-791 (1999)

    Article  Google Scholar 

  74. Lee, T-W.: Independent Component Analysis: Theory and Applications, Kluwer Academic Publishers (2001)

    Google Scholar 

  75. Li, H., Adali, T., Wang, W., Emge, D., Cichocki, A. Non-negative matrix factorization with orthogonality constraints and its application to Raman spectroscopy, Journal of VLSI Signal Processing, 48:83-97 (2007).

    Article  Google Scholar 

  76. Li, S.Z., Hou, X., Zhang, H., Cheng, Q.: Learning spatially localized, partsbased representations, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1:207-212 (2001)

    Google Scholar 

  77. Li, Y., Cichocki, A.: Sparse representation of images using alternating linear programming, Proceedings of the 7th International Symposium on Signal Processing and Its Applications, vol. 1, pp. 57-60, Paris, France (2003)

    Google Scholar 

  78. Lin, C-J.: Projected gradient methods for non-negative matrix factorization, Neural Computation, 19, 2756-2779 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  79. Liu, N., Zhang, B., Yan, J., Chen, Z., Liu, W., Bai, F. and Chien, L.: Text representation: From vector to tensor, in ICDM 2005: Proceedings of the 5th IEEE International Conference on Data Mining, IEEE Computer Society, pp. 725-728 (2005)

    Google Scholar 

  80. Liu, W., Zheng, N., Lu, X.: Non-negative matrix factorization for visual coding, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing 3:293-296 (2003)

    Google Scholar 

  81. Lu, J., Xu, B., Yang, H.: Matrix dimensionality reduction for mining Web logs, Proceedings of the IEEE/WIC International Conference on Web Intelligence, pp. 405-408, Halifax, Nova Scotia, Canada (2003)

    Google Scholar 

  82. Mao, Y., Saul, L.K.: Modeling distances in large-scale networks by matrix factorization, Proceedings of the ACM Internet Measurement Conference, pp. 278-287, Sicily, Italy (2004)

    Chapter  Google Scholar 

  83. Martinez-Montes, E., Valdes-Sosa, P. A., Miwakeichi, F., Goldman, R. I. and Cohen, M. S.: Concurrent EEG/fMRI analysis by multiway partial least squares, NeuroImage, 22, pp. 1023-1034 (2004)

    Article  Google Scholar 

  84. Miwakeichi, F., Martinez-Montes, E. P., Valds-Sosa, A., Nishiyama, N., Mizuhara, H. and Yamaguchi, Y.:Decomposing EEG data into space-time-frequency components using parallel factor analysis, NeuroImage, 22, pp. 1035-1045 (2004)

    Article  Google Scholar 

  85. Mocks, J.: Topographic components model for event-related potentials and some biophysical considerations, IEEE Transactions on Biomedical Engineering, 35, pp. 482484 (1988)

    Article  Google Scholar 

  86. Moloshok, T.D., Klevecz, R.R., Grant, J.D., Manion, F.J., Speier, W.F., Ochs, M.F. Application of Bayesian decomposition for analyzing microarray data, Bioinformatics, 18(4):566-575 (2002).

    Article  Google Scholar 

  87. Moloshok, T.D., Datta, D., Kossenkov, A.V., Ochs, M.F. Bayesian decomposition classification of the project normal data set, In K.F. Johnson and S.M. Lin editors, Methods ofMicroarray Data Analysis III, pp. 211-232, Kluwer Academic, Boston, (2003).

    Google Scholar 

  88. Monti, S., Tamayo, P., Golub, T.R., Mesirov, J.P.: Consensus clustering: A resampling-based method for class discovery and visualization in gene expression microarray data, Machine Learning Journal, 52:91-118 (2003)

    Article  MATH  Google Scholar 

  89. Novak, M., Mammone, R.: Use of non-negative matrix factorization for language model adaptation in a lecture transcription task, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp. 541-544, Salt Lake City, Utah, USA (2001)

    Google Scholar 

  90. Ochs, M.F., Stoyanova, R., Arias-Mendoza, A., Brown, T.R. A new method for spectral decomposition using a bilinear Bayesian approach, Journal of Magnetic Resonance Imaging, 137:161-176 (1999).

    Google Scholar 

  91. Okun, O., Priisalu, H.: Fast nonnegative matrix factorization and its application for protein fold recognition, EURASIP Journal on Applied Signal Processing, Article ID 71817 (2006)

    Google Scholar 

  92. Paatero, P.: The multilinear engine: A table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model, Journal of Computational and Graphical Statistics, 8 (1999), pp. 854-888

    Article  MathSciNet  Google Scholar 

  93. Pascual-Montano, A., Carmona-Saez, P., Chagoyen, M., Tirado, F., Carazo, J.M., Pascual-Marqui, R.D.: bioNMF: a versatile tool for non-negative matrix factorization in biology, BMC Bioinformatics, 28(7):366 (2006)

    Article  Google Scholar 

  94. Pascual-Montano, P., Carazo, J.M., Kochi, K., Lehmann, D., Pascual-Marqui, R.: Nonsmooth nonnegative matrix factorization, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(3):403-415 (2006)

    Article  Google Scholar 

  95. Pascual-Montano, P., Carazo, J.M., Kochi, K., Lehmann, D., Pascual-Marqui, R.: Two-way clustering of gene expression profiles by sparse matrix factorization, Proceedings of the Computational Systems Bioinformatics Conference,Workshops and Poster Abstracts, 103-104 (2005)

    Google Scholar 

  96. Pauca, P., Shahnaz, F., Berry, M., and Plemmons, R.: Text mining using nonnegative matrix factorizations, Proceedings of the Fourth SIAMInternational Conference on DataMining, Lake Buena Vista, Florida (2004)

    Google Scholar 

  97. Pehkonen, P., Wong, G., Toronen, P.: Links Theme discovery from gene lists for identification and viewing of multiple functional groups, BMC Bioinformatics, 6:162 (2005)

    Article  Google Scholar 

  98. Qi, L., Sun, W. and Wang, Y.: Numerical multilinear algebra and its applications, Frontiers of Mathematics in China, 2, pp. 501-526 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  99. Rajapakse, M., Wyse, L.: NMF vs ICA for face recognition, Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis, vol. 2, pp. 605-610, Rome, Italy (2003)

    Google Scholar 

  100. Ramanath, R., Snyder, W.E., Qi, H.: Eigenviews for object recognition in multispectral imaging systems, Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop, pp. 33-38, Washington, DC, USA (2003)

    Google Scholar 

  101. Roberts, T., Everson, R.: Independent Components Analysis: Principles and Practice, Cambridge University Press, Cambridge, United Kingdom (2000)

    Google Scholar 

  102. Ross, D.A., Zemel, R.S.: Learning parts-based representations of data, Journal of Machine Learning Research, 7:2369-2397 (2006)

    MathSciNet  Google Scholar 

  103. Sajda, P., Du, S., Brown, T.R., Stoyanova, R., Shungu, D.C. et al: Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain, IEEE Transactions on Medical Imaging, 23:1453-65 (2004)

    Article  Google Scholar 

  104. Saul, L.K., Lee, D.D.: Multiplicative updates for classification by mixture models, Advances in Neural and Information Processing Systems (2002)

    Google Scholar 

  105. Sejnowski, T.: http://www.cnl.salk.edu/~tewon/ica.cnl.html

  106. Shahnaz, F., Berry, M.: Document clustering using nonnegative matrix factorization, Information Processing and Management: An International Journal, 42(2): March 2006)373-386 (2006)

    Article  MATH  Google Scholar 

  107. Shashua, A. and Hazan, T.: Non-negative tensor factorization with applications to statistics and computer vision, in ICML: Proceedings of the 22nd International Conference on Machine Learning, 2005, pp. 792-799 (2005)

    Google Scholar 

  108. Shlens, J.: A tutorial on principal component analysis Available at http://www.snl.salk.edu/~schlens/pub/notes/pca.pdf (2009)

  109. Sidiropoulos, N. and R. Budampati, Khatri-Rao space-time codes, IEEE Transactions on Signal Processing, 50 (2002), pp. 2396-2407

    Article  MathSciNet  Google Scholar 

  110. Sidiropoulos, N., Bro, R. and Giannakis, G.: Parallel factor analysis in sensor array processing, IEEE Transactions on Signal Processing, 48, pp. 2377-2388 (2000)

    Article  Google Scholar 

  111. Sidiropoulos, N., Giannakis, G., and Bro, R.: Blind PARAFAC receivers for DSCDMA systems, IEEE Transactions on Signal Processing, 48, pp. 810-823 (2000)

    Article  Google Scholar 

  112. Smaragdis, P., Brown, J.C.: Non-negative matrix factorization for polyphonic music transcription, Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 177-180, New Paltz, NY, USA (2003)

    Google Scholar 

  113. Sun, J., Papadimitriou, S. and Yu, P. S.: Window-based tensor analysis on highdimensional and multi-aspect streams, in ICDM 2006: Proceedings of the 6th IEEE Conference on Data Mining, IEEE Computer Society, pp. 1076-1080 (2006)

    Google Scholar 

  114. Sun, J., Tao D., and Faloutsos, C.: Beyond streams and graphs: Dynamic tensor analysis, in KDD ’06: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, pp. 374-383 (2006)

    Google Scholar 

  115. Sun, J.-T., Zeng H.-J., Liu, H., Lu, Y. and Chen, Z.: Cube SVD: A novel approach to personalized Web search, in WWW2005: Proceedings of the 14th International Conference on World Wide Web, ACM Press, pp. 382-390 (2005)

    Google Scholar 

  116. Tamayo, P., Scanfield, D., Ebert, B.L., Gillette, M.A., Roberts, C.W.M., Mesirov, J.P.: Metagene projection for cross-platform, cross-species characterization of global transcriptional states, Proceedings of the National Academy of Sciences, 104(14): 5959-5964 (2007)

    Article  Google Scholar 

  117. Tibshirani, R. and Bair, E.: Improved detection of differential gene expression through the singular value decomposition. Available at http://www-stat.stanford.edu/~tibs/ftp/eric.pdf (2003)

  118. Tresch, M.C., Cheung, V.C., d’Avella, A.: Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets, Journal of Neurophysiology Apr;95(4):2199-2211 Epub 2006 Jan 4 (2006)

    Article  Google Scholar 

  119. Tsuge, S., Shishibori, M., Kuroiwa, S., Kita, K.: Dimensionality reduction using nonnegative matrix factorization for information retrieval, Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, vol. 2, pp. 960- 965, Tucson, Arizona, USA (2001)

    Google Scholar 

  120. Tucker, L. R.: Implications of factor analysis of three-way matrices for measurement of change, in Problems in Measuring Change, C.W. Harris, ed., University of Wisconsin Press,, pp. 122-137 (1963)

    Google Scholar 

  121. Vasilescu, M. A. O. and Terzopoulos, D.: Tensortextures: multilinear image based rendering, ACM Transactions on Graphics, 23, pp. 336-342 (2004)

    Article  Google Scholar 

  122. Wang, G., Kossenkov, A.V., Ochs, M.F.: LS-NMF: A modified non-negative matrix factorization algorithm utilizing uncertainty estimates, BMC Bioinformatics, 7:175 (2005)

    Article  Google Scholar 

  123. Wang, Y., Jia, Y., Hu, C., Turk, M.: Fisher non-negative matrix factorization for learning local features, Proceedings of the 6th Asian Conference on Computer Vision, pp. 806-811, Jeju Island, Korea (2004)

    Google Scholar 

  124. Welling, M. andWeber,M.: Positive tensor factorization, Pattern Recognition Letters, 22, pp. 1255-1261 (2001)

    Article  MATH  Google Scholar 

  125. Xu, B., Lu, J., Huang, G.: A constrained non-negative matrix factorization in information retrieval, Proceedings of the IEEE International Conference on Information Reuse and Integration, pp. 273-277, Las Vegas, NV, USA (2003)

    Google Scholar 

  126. Zass, R. and Shashua, A.: Nonnegative sparse PCA. Advances in Neural Information Processing Systems (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthik Devarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer US

About this chapter

Cite this chapter

Devarajan, K. (2010). Matrix and Tensor Decompositions. In: Heath, L., Ramakrishnan, N. (eds) Problem Solving Handbook in Computational Biology and Bioinformatics. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09760-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09760-2_14

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09759-6

  • Online ISBN: 978-0-387-09760-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics