Skip to main content

Dopamine and Serotonin Crosstalk Within the Dopaminergic and Serotonergic Systems

  • Chapter
  • First Online:
Co-Existence and Co-Release of Classical Neurotransmitters

Abstract

Dopamine (DA) and serotonin (5-hydroxytryptamine, 5-HT) fibers broadly innervate the brain. DA transporters (DATs) and 5-HT transporters (SERTs) determine the temporal and spatial extent of the signals, but the transporters are not completely selective. Under circumstances that elevate extracellular 5-HT (such as treatment with antidepressants that block SERTs), DATs expressed on the dense DA terminals of the striatum uptake 5-HT. Subsequently, 5-HT enters DA synaptic vesicles, and DA and 5-HT are co-released. Circumstances also can favor DA loading into 5-HT neurons and terminals. For example, during L-dopa treatment of Parkinson’s disease, 5-HT neurons uptake L-dopa that is subsequently converted to DA, leading to co-release. DA and 5-HT neurons promiscuously uptake each other’s neurotransmitter and co-release occurs under certain conditions. This process induces DA and 5-HT co-signaling mechanisms that have important implications for neuropsychiatric disorders and their treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghajanian GK, Marek GJ (1999) Serotonin and hallucinogens. Neuropsychopharmacology 21(2 Suppl):16S–23S

    PubMed  CAS  Google Scholar 

  • Aizman O, Brismar H, Uhlen P, Zettergren E, Levey AI, Forssberg H, et al (2000) Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat Neurosci 3:226–230

    Article  PubMed  CAS  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  PubMed  CAS  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    Article  PubMed  CAS  Google Scholar 

  • Alexander SP, Mathie A, Peters JA (2007) 7TM Receptors. Br J Pharmacol 150 Suppl 1:S4–S81

    Article  CAS  Google Scholar 

  • Aman TK, Shen RY, Haj-Dahmane S (2007) D2-like dopamine receptors depolarize dorsal raphe serotonin neurons through the activation of nonselective cationic conductance. J Pharmacol Exp Ther 320:376–385

    Article  PubMed  CAS  Google Scholar 

  • Anden NE, Dahlstrom A, Fuxe K, Larsson K (1965) Mapping out of catecholamine and 5-hydroxytryptamine neurons innervating the telencephalon and diencephalon. Life Sci 4:1275–1279

    Article  PubMed  CAS  Google Scholar 

  • Arai R, Karasawa N, Geffard M, Nagatsu I (1995) L-DOPA is converted to dopamine in serotonergic fibers of the striatum of the rat: a double-labeling immunofluorescence study. Neurosci Lett 195:195–198

    Article  PubMed  CAS  Google Scholar 

  • Arai R, Karasawa N, Nagatsu I (1996) Aromatic L-amino acid decarboxylase is present in serotonergic fibers of the striatum of the rat. A double-labeling immunofluorescence study. Brain Res 706:177–179

    Article  PubMed  CAS  Google Scholar 

  • Arbuthnott GW, Wickens J (2007) Space, time and dopamine. Trends Neurosci 30:62–69

    Article  PubMed  CAS  Google Scholar 

  • Ariano MA (1997) Distribution of dopamine receptors. In: Neve KA, RL Neve RL (ed) The dopamine receptors. Humana Press, Totowa, New Jersey. pp. 77–103

    Google Scholar 

  • Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179:641–667

    Article  PubMed  CAS  Google Scholar 

  • Baker KG, Halliday GM, Hornung JP, Geffen LB, Cotton RG, Tork I (1991) Distribution, morphology and number of monoamine-synthesizing and substance P-containing neurons in the human dorsal raphe nucleus. Neuroscience 42:757–775

    Article  PubMed  CAS  Google Scholar 

  • Baldessarini RJ (2006) Drug Therapy of Depression and Anxiety Disorders. In: Brunton LL, Lazo JS, Parker KL (ed) Goodman and Gilman’s the Pharmacological Basis of Therapeutics. McGraw-Hill, New York. pp. 429–459

    Google Scholar 

  • Bamford NS, Zhang H, Schmitz Y, Wu NP, Cepeda C, Levine MS, et al (2004) Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. Neuron 42:653–663

    Article  PubMed  CAS  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    Article  PubMed  CAS  Google Scholar 

  • Baufreton J, Garret M, Rivera A, de la Calle A, Gonon F, Dufy B, Bioulac B, Taupignon A (2003) D5 (not D1) dopamine receptors potentiate burst-firing in neurons of the subthalamic nucleus by modulating an L-type calcium conductance. J Neurosci 23:816–825

    PubMed  CAS  Google Scholar 

  • Baumgarten HG, Grozdanovic Z (1997) Anatomy of the central serotoninergic projection systems. In: Baumgarten HG, Gothert M (ed) Serotoninergic neurons and 5-HT receptors in the CNS. Springer-Verlag, Berlin. pp. 41–89

    Google Scholar 

  • Bedard P, Pycock CJ (1977) “Wet-dog” shake behaviour in the rat: a possible quantitative model of central 5-hydroxytryptamine activity. Neuropharmacology 16:663–670

    Article  PubMed  CAS  Google Scholar 

  • Bentivoglio M, Morelli M (2005) The organisation and circuits of mesencephalic dopaminergic neurons and the distribution of dopamine receptors in the brain. In: Dunnett SB, Bentivoglio M, Bjorklund A, Hokfelt T (ed) Handbook of Chemical Neuroanatomy: Dopamine Vol. 21, Elsevier, Amsterdam. pp. 1–107.

    Google Scholar 

  • Bergson C, Mrzljak L, Smiley JF, Pappy M, Levenson R, Goldman-Rakic PS (1995) Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J Neurosci 15:7821–7836

    PubMed  CAS  Google Scholar 

  • Bertler A, Rosengren E (1959) Occurrence and distribution of dopamine in brain and other tissues. Experientia 15:10–11

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30:194–202

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund A, Lindvall O (1984) Dopamine-containing systems in the CNS. In: Björklund A, Hökfelt T Ed, Classical transmitters in the CNS, Part I. Elsevier, Amsterdam. pp. 55–122

    Google Scholar 

  • Bjorklund A, Lindvall O (1986) Cathecholaminergic brain stem regulator systems. In: Bloom FE (ed) Handbook of Physiology. Section 1: The Nervous System. vol IV. Intrinsic regulatory system of the brain. Waverly Press, Baltimore, Maryland. pp 155–235.

    Google Scholar 

  • Blomeley C, Bracci E (2005) Excitatory effects of serotonin on rat striatal cholinergic interneurones. J Physiol 569:715–721

    Article  PubMed  CAS  Google Scholar 

  • Bockaert J, Claeysen S, Becamel C, Dumuis A, Marin P (2006) Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res 326:553–572

    Article  PubMed  CAS  Google Scholar 

  • Bonsi P, Cuomo D, Ding J, Sciamanna G, Ulrich S, Tscherter A, Bernardi G, Surmeier DJ, Pisani A (2007) Endogenous serotonin excites striatal cholinergic interneurons via the activation of 5-HT2C, 5-HT6, and 5-HT7 serotonin receptors: implications for extrapyramidal side effects of serotonin reuptake inhibitors. Neuropsychopharmacology 32:1840–1854

    Article  PubMed  CAS  Google Scholar 

  • Boyer EW, Shannon M (2005) The serotonin syndrome. N Engl J Med 352:1112–1120

    Article  PubMed  CAS  Google Scholar 

  • Boylan CB, Bennett-Clarke CA, Crissman RS, Mooney RD, Rhoades RW (2000) Clorgyline treatment elevates cortical serotonin and temporarily disrupts the vibrissae-related pattern in rat somatosensory cortex. J Comp Neurol 427:139–149

    Article  PubMed  CAS  Google Scholar 

  • Bramley JR, Sollars PJ, Pickard GE, Dudek FE (2005) 5-HT1B receptor-mediated presynaptic inhibition of GABA release in the suprachiasmatic nucleus. J Neurophysiol 93:3157–3164

    Article  PubMed  CAS  Google Scholar 

  • Brodie BB, Shore PA, Silver SL (1955) Potentiating action of chlorpromazine and reserpine. Nature 175:1133–1134

    Article  PubMed  CAS  Google Scholar 

  • Brotchie JM (2005) Nondopaminergic mechanisms in levodopa-induced dyskinesia. Movement Disorders 20:919–931

    Article  PubMed  Google Scholar 

  • Brown P, Gerfen CR (2006) Plasticity within striatal direct pathway neurons after neonatal dopamine depletion is mediated through a novel functional coupling of serotonin 5-HT2 receptors to the ERK 1/2 map kinase pathway. J Comp Neurol 498:415–430

    Article  PubMed  CAS  Google Scholar 

  • Bruns D, Riedel D, Klingauf J, Jahn R (2000) Quantal release of serotonin. Neuron 28:205–220

    Article  PubMed  CAS  Google Scholar 

  • Bubar MJ, Cunningham KA (2007) Distribution of serotonin 5-HT2C receptors in the ventral tegmental area. Neuroscience 146:286–297

    Article  PubMed  CAS  Google Scholar 

  • Bubser M, Backstrom JR, Sanders-Bush E, Roth BL, Deutch AY (2001) Distribution of serotonin 5-HT2A receptors in afferents of the rat striatum. Synapse 39:297–304

    Article  PubMed  CAS  Google Scholar 

  • Bunin MA, Wightman RM (1998) Quantitative evaluation of 5-hydroxytryptamine (serotonin) neuronal release and uptake: an investigation of extrasynaptic transmission. J Neurosci 18:4854–4860

    PubMed  CAS  Google Scholar 

  • Cameron DL, Williams JT (1993) Dopamine D1 receptors facilitate transmitter release. Nature 366:344–347

    Article  PubMed  CAS  Google Scholar 

  • Cameron DL, Williams JT (1994) Cocaine inhibits GABA release in the VTA through endogenous 5-HT. J Neurosci 14:6763–6767

    PubMed  CAS  Google Scholar 

  • Cantrell AR, Catterall WA (2001) Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Nat Rev Neurosci 2:397–407

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A (1959) The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol Rev 11:490–493

    PubMed  CAS  Google Scholar 

  • Carlsson A (2001) A half-century of neurotransmitter research: impact on neurology and psychiatry. Nobel lecture. Nobel Foundation, Stockholm, Sweden.

    Google Scholar 

  • Carlsson A (2002a) Treatment of Parkinson’s with L-DOPA. The early discovery phase, and a comment on current problems. J Neural Transm 109:777–787

    Google Scholar 

  • Carlsson A (2002b) Birth of dopamine: A Cinderella saga. In: Di Chiara G (ed) Dopamine in CNS I. Springer-Verlag, Berlin. pp 23–41

    Google Scholar 

  • Carlsson T, Carta M, Winkler C, Bjorklund A, Kirik D (2007) Serotonin neuron transplants exacerbate L-DOPA-induced dyskinesias in a rat model of Parkinson’s disease. J Neurosci 27:8011–8022

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Falck B, Hillarp N-A (1962) Cellular localization of brain monoamines. Acta Physiol Scand 56 Suppl 196:1–28

    Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effect of Chlorpromazine or haloperidol on the formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 20:140–144

    Article  CAS  Google Scholar 

  • Carlsson A, Lindqvist M, Magnusson T, Waldeck B (1958) On the presence of 3-hydroxytyramine in brain. Science 127:471

    Article  PubMed  CAS  Google Scholar 

  • Carta M, Carlsson T, Kirik D, Bjorklund A (2007) Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain 130:1819–1833

    Article  PubMed  Google Scholar 

  • Cases O, Lebrand C, Giros B, Vitalis T, De Maeyer E, Caron MG, et al (1998) Plasma membrane transporters of serotonin, dopamine, and norepinephrine mediate serotonin accumulation in atypical locations in the developing brain of monoamine oxidase A knock-outs. J Neurosci 18:6914–6927

    PubMed  CAS  Google Scholar 

  • Cenci MA (2007) Dopamine dysregulation of movement control in L-DOPA-induced dyskinesia. Trends Neurosci 30:236–243

    Article  PubMed  CAS  Google Scholar 

  • Cenci MA, Lundblad M (2006) Post- versus presynaptic plasticity in L-DOPA-induced dyskinesia. J Neurochem 99:381–392

    Article  PubMed  CAS  Google Scholar 

  • Centonze D, Grande C, Usiello A, Gubellini P, Erbs E, Martin AB, Pisani A, Tognazzi N, Bernardi G, Moratalla R, Borrelli E, Calabresi P (2003) Receptor subtypes involved in the presynaptic and postsynaptic actions of dopamine on striatal interneurons. J Neurosci. 23:6245–6254

    PubMed  CAS  Google Scholar 

  • Chameau P, van Hooft JA (2006) Serotonin 5-HT3 receptors in the central nervous system. Cell Tissue Res 326:573–581

    Article  PubMed  CAS  Google Scholar 

  • Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, Meredith GE, Surmeier DJ (2007) ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447:1081–1086

    Article  PubMed  CAS  Google Scholar 

  • Charara A, Parent A (1998) Chemoarchitecture of the primate dorsal raphe nucleus. J Chem Neuroanat 15: 111–127

    Article  PubMed  CAS  Google Scholar 

  • Chen N-H, Reith MEA (1997) Role of axonal and somatodendritic monoamine transporters in action of uptake blockers. In: Reith MEA (ed) Neurotransmitter transporters: structure, function, and regulation. Humana Press, Totowa, New Jersey. pp. 345–391

    Google Scholar 

  • Chu Y, Kompoliti K, Cochran EJ, Mufson EJ, Kordower JH (2002) Age-related decreases in Nurr1 immunoreactivity in the human substantia nigra. J Comp Neurol 450:203–214

    Article  PubMed  CAS  Google Scholar 

  • Chu YX, Liu J, Feng J, Wang Y, Zhang QJ, Li Q (2004) Changes of discharge rate and pattern of 5-hydroxytrypamine neurons of dorsal raphe nucleus in a rat model of Parkinson’s disease. Sheng Li Xue Bao 56:597–602

    PubMed  Google Scholar 

  • Ciliax BJ, Drash GW, Staley JK, Haber S, Mobley CJ, Miller GW, et al (1999) Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol 409:38–56

    Article  PubMed  CAS  Google Scholar 

  • Ciliax BJ, Heilman C, Demchyshyn LL, Pristupa ZB, Ince E, Hersch SM, et al (1995) The dopamine transporter: immunochemical characterization and localization in brain. J Neurosci 15:1714–1723

    PubMed  CAS  Google Scholar 

  • Ciliax BJ, Nash N, Heilman C, Sunahara R, Hartney A, Tiberi M, Rye DB, Caron MG, Niznik HB, Levey AI (2000) Dopamine D5 receptor immunolocalization in rat and monkey brain. Synapse 37:125–145

    Article  PubMed  CAS  Google Scholar 

  • Clemett DA, Punhani T, Duxon MS, Blackburn TP, Fone KC (2000) Immunohistochemical localisation of the 5-HT2C receptor protein in the rat CNS. Neuropharmacology 39:123–132

    Article  PubMed  CAS  Google Scholar 

  • Cornea-Hebert V, Riad M, Wu C, Singh SK, Descarries L (1999) Cellular and subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat. J Comp Neurol 409:187–209

    Article  PubMed  CAS  Google Scholar 

  • Coulter CL, Happe HK, Murrin LC (1996) Postnatal development of the dopamine transporter: a quantitative autoradiographic study. Brain Res Dev Brain Res 92:172–181

    Article  PubMed  CAS  Google Scholar 

  • Cragg SJ, Rice ME (2004) DAncing past the DAT at a DA synapse. Trends Neurosci 27:270–277

    Article  PubMed  CAS  Google Scholar 

  • Creese I, Burt, DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of anti-schizophrenic drugs. Science 19:481–483

    Article  Google Scholar 

  • Dahlstrom A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand 62:1–55

    Google Scholar 

  • Dahlstrom A, Fuxe K, Olson L, Ungerstedt U (1964) Ascending systems of catecholamine neurons from the lower brain stem. Acta Physiol Scand 62:485–486

    Article  Google Scholar 

  • Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122:1437–1448

    Article  PubMed  Google Scholar 

  • Day M, Wang Z, Ding J, An X, Ingham CA, Shering AF, et al. (2006) Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 9:251–259

    Article  PubMed  CAS  Google Scholar 

  • De Deurwaerdere P, Bonhomme N, Lucas G, Le Moal M, Spampinato U (1996) Serotonin enhances striatal dopamine outflow in vivo through dopamine uptake sites. J Neurochem 66:210–215

    Article  PubMed  Google Scholar 

  • de Jong TR, Veening JG, Waldinger MD, Cools AR, Olivier B (2006) Serotonin and the neurobiology of the ejaculatory threshold. Neurosci Biobehav Rev 30:893–907

    Article  PubMed  CAS  Google Scholar 

  • DeLong MR, Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64:20–24

    Article  PubMed  Google Scholar 

  • Descarries L, Mechawar N (2000) Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Prog Brain Res 125:27–47

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G, Bassareo V (2007) Reward system and addiction: what dopamine does and doesn’t do. Curr Opin Pharmacol 7:69–76

    Article  PubMed  CAS  Google Scholar 

  • Di Giovanni G, De Deurwaerdére P, Di Mascio M, Di Matteo V, Esposito E, Spampinato U (1999) Selective blockade of serotonin-2C/2B receptors enhances mesolimbic and mesostriatal dopaminergic function: a combined in vivo electrophysiological and microdialysis study. Neuroscience 91:587–597

    Article  PubMed  Google Scholar 

  • Di Giovanni G, Di Matteo V, La Grutta V, Esposito E (2001) m-Chlorophenylpiperazine excites non-dopaminergic neurons in the rat substantia nigra and ventral tegmental area by activating serotonin-2C receptors. Neuroscience 103:111–116

    Article  PubMed  Google Scholar 

  • Di Giovanni G, Di Matteo V, Pierucci M, Benigno A, Esposito E (2006) Central serotonin2C receptor: from physiology to pathology. Curr Top Med Chem 6:1909–1925

    Article  PubMed  Google Scholar 

  • Di Matteo V, De Blasi A, Di Giulio C, Esposito E (2001) Role of 5-HT2C receptors in the control of central dopamine function. Trends Pharmacol Sci 22:229–232

    Article  PubMed  Google Scholar 

  • Diana M, Tepper JM (2002) Electrophysiological pharmacology of mesencephalic dopaminergic neurons. In: Di Chiara G (ed) Dopamine in the CNS II. Springer-Verlag, Berlin. pp 1–62

    Google Scholar 

  • Diaz J, Pilon C, Le Foll B, Gros C, Triller A, Schwartz JC, Sokoloff P (2000) Dopamine D3 receptors expressed by all mesencephalic dopamine neurons. J Neurosci 20:8677–8684

    PubMed  CAS  Google Scholar 

  • Doherty MD, Pickel VM (2000) Ultrastructural localization of the serotonin2A receptor in dopaminergic neurons in the ventral tegmental area. Brain Res 864:176–185

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Cooper D, Nasif F, Hu XT, White FJ (2004) Dopamine modulates inwardly rectifying potassium currents in medial prefrontal cortex pyramidal neurons. J Neurosci 24:3077–3085

    Article  PubMed  CAS  Google Scholar 

  • Doucet G, Descarries L, Garcia S (1986) Quantification of the dopamine innervation in adult rat neostriatum. Neuroscience 19:427–445

    Article  PubMed  CAS  Google Scholar 

  • Dunah AW, Standaert DG (2001) Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci 21:5546–5558

    PubMed  CAS  Google Scholar 

  • Emborg ME, Ma SY, Mufson EJ, Levey AI, Taylor MD, Brown WD, Holden JE, Kordower JH (1998) Age-related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys. J Comp Neurol 401:253–265

    Article  PubMed  CAS  Google Scholar 

  • Eberle-Wang K, Mikeladze Z, Uryu K, Chesselet MF (1997) Pattern of expression of the serotonin2C receptor messenger RNA in the basal ganglia of adult rats. J Comp Neurol 384:233–247

    Article  PubMed  CAS  Google Scholar 

  • Eshleman AJ, Carmolli M, Cumbay M, Martens CR, Neve KA, Janowsky A (1999) Characteristics of drug interactions with recombinant biogenic amine transporters expressed in the same cell type. J Pharmacol Exp Ther 289:877–885

    PubMed  CAS  Google Scholar 

  • Esposito E (2006) Serotonin-dopamine interaction as a focus of novel antidepressant drugs. Curr Drug Targets 7:177–185

    Article  PubMed  CAS  Google Scholar 

  • Falck B (1962) Observations on the possibilities of the cellular localization of monoamines by a fluorescence method. Acta Physiol Scand 56 Suppl 197:1–25

    Google Scholar 

  • Ferezou I, Cauli B, Hill EL, Rossier J, Hamel E, Lambolez B (2002) 5-HT3 receptors mediate serotonergic fast synaptic excitation of neocortical vasoactive intestinal peptide/cholecystokinin interneurons. J Neurosci 22:7389–7397

    PubMed  CAS  Google Scholar 

  • Ferre S, Artigas F (1993) Dopamine D2 receptor-mediated regulation of serotonin extracellular concentration in the dorsal raphe nucleus of freely moving rats. J Neurochem 61:772–775

    Article  PubMed  CAS  Google Scholar 

  • Ferre S, Corte´s R, Artigas F (1994) Dopaminergic regulation of the serotonin raphe-striatal pathway: Microdialysis studies in freely moving rats. J Neurosci 14:4839–4846

    PubMed  CAS  Google Scholar 

  • Feuerstein TJ, Hertting G, Lupp A, Neufang B (1986) False labelling of dopaminergic terminals in the rabbit caudate nucleus: uptake and release of [3H]-5-hydroxytryptamine. Br J Pharmacol 88:677–684

    PubMed  CAS  Google Scholar 

  • Fink KB, Göthert M (2007) 5-HT receptor regulation of neurotransmitter release. Pharmacol Rev 59:360–417

    PubMed  CAS  Google Scholar 

  • Freed C, Revay R, Vaughan RA, Kriek E, Grant S, Uhl GR, et al (1995) Dopamine transporter immunoreactivity in rat brain. J Comp Neurol 359:340–349

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Jones SR, Fumagalli F, Wightman RM, Caron MG (1998) Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis. Brain Res Rev 26:148–153

    Article  PubMed  CAS  Google Scholar 

  • Gao C, Sun X, Wolf ME (2006) Activation of D1 dopamine receptors increases surface expression of AMPA receptors and facilitates their synaptic incorporation in cultured hippocampal neurons. J Neurochem 98:1664–1677

    Article  PubMed  CAS  Google Scholar 

  • Garraway SM, Hochman S (2001) Modulatory actions of serotonin, norepinephrine, dopamine, and acetylcholine in spinal cord deep dorsal horn neurons. J Neurophysiol 86:2183–2194

    PubMed  CAS  Google Scholar 

  • Gaspar P, Cases O, Maroteaux L (2003) The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 4:1002–1012

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci 15:285–320

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR (2000) Molecular effects of dopamine on striatal-projection pathways. Trends Neurosci 23(10 Suppl):S64–70

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR (2003) D1 dopamine receptor supersensitivity in the dopamine-depleted striatum animal model of Parkinson’s disease. Neuroscientist 9:455–462

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR (2006) Indirect-pathway neurons lose their spines in Parkinson disease. Nat Neurosci 9:157–158

    Article  PubMed  CAS  Google Scholar 

  • German DC, Manaye KF (1993) Midbrain dopaminergic-neurons (Nuclei A8, A9, and A10): 3-dimensional reconstruction in the rat. J Comp Neurol 331:297–309

    Article  PubMed  CAS  Google Scholar 

  • Gillman PK (2006) A review of serotonin toxicity data: implications for the mechanisms of antidepressant drug action. Biol Psychiatry 59:1046–1051

    Article  PubMed  CAS  Google Scholar 

  • Giorgetti M, Tecott LH (2004) Contributions of 5-HT2C receptors to multiple actions of central serotonin systems. Eur J Pharmacol 488:1–9

    Article  PubMed  CAS  Google Scholar 

  • Giros B, el Mestikawy S, Bertrand L, Caron MG (1991) Cloning and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett 295:149–1454

    Article  PubMed  CAS  Google Scholar 

  • Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, et al (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917–925

    Article  PubMed  CAS  Google Scholar 

  • Gonon F (1997) Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. J Neurosci 17:5972–5978

    PubMed  CAS  Google Scholar 

  • Goto Y, Grace AA (2007) The Dopamine system and the pathophysiology of schizophrenia: A basic science perspective. Int Rev Neurobiol 78:41–68

    Article  PubMed  CAS  Google Scholar 

  • Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24

    Article  PubMed  CAS  Google Scholar 

  • Greengard P (2001) The neurobiology of slow synaptic transmission. Science 294:1024–1030

    Article  PubMed  CAS  Google Scholar 

  • Greif GJ, Lin YJ, Liu JC, Freedman JE (1995) Dopamine-modulated potassium channels on rat striatal neurons: specific activation and cellular expression. J Neurosci 15:4533–4544

    PubMed  CAS  Google Scholar 

  • Groves PM, Linder JC, Young SJ (1994) 5-hydroxydopamine-labeled dopaminergic axons: three-dimensional reconstructions of axons, synapses and postsynaptic targets in rat neostriatum. Neuroscience 58:593–604

    Article  PubMed  CAS  Google Scholar 

  • Guillin O, Abi-Dargham A, Laruelle M (2007) Neurobiology of dopamine in schizophrenia. Int Rev Neurobiol 78:1–39

    Article  PubMed  CAS  Google Scholar 

  • Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382

    PubMed  CAS  Google Scholar 

  • Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26:317–330

    Article  PubMed  Google Scholar 

  • Haj-Dahmane S (2001) D2-like dopamine receptor activation excites rat dorsal raphe 5-HT neurons in vitro. Eur J Neurosci 14:125–134

    Article  PubMed  CAS  Google Scholar 

  • Hallett PJ, Spoelgen R, Hyman BT, Standaert DG, Dunah AW (2006) Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking. J Neurosci 26:4690–4700

    Google Scholar 

  • Hernandez-Lopez S, Tkatch T, Perez-Garci E, Galarraga E, Bargas J, Hamm H, Surmeier DJ (2000) D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLCβ1-IP3-calcineurin-signaling cascade. J Neurosci 20:8987–8995

    PubMed  CAS  Google Scholar 

  • Hersch SM, Ciliax BJ, Gutekunst CA, Rees HD, Heilman CJ, Yung KK, Bolam JP,Ince E, Yi H, Levey AI (1995)Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J Neurosci 15:5222–5237

    PubMed  CAS  Google Scholar 

  • Hersch SM, Yi H, Heilman CJ, Edwards RH, Levey AI (1997) Subcellular localization and molecular topology of the dopamine transporter in the striatum and substantia nigra. J Comp Neurol 388:211–227

    Article  PubMed  CAS  Google Scholar 

  • Herve D, Pickel VM, Joh TH, Beaudet A (1987) Serotonin axon terminals in the ventral tegmental area of the rat: fine structure and synaptic input to dopaminergic neurons. Brain Res 435:71–83

    Article  PubMed  CAS  Google Scholar 

  • Herve D, Girault A (2005) Signal transduction of dopamine receptors. In: Dunnett SB, Bentivoglio M, Bjorklund A, Hokfelt T (ed) Handbook of Chemical Neuroanatomy: Dopamine Vol. 21, Elsevier, Amsterdam. pp. 109–151

    Google Scholar 

  • Hilfiker S, Czernik AJ, Greengard P, Augustine GJ (2001) Tonically active protein kinase A regulates neurotransmitter release at the squid giant synapse. J Physiol 531:141–146

    Article  PubMed  CAS  Google Scholar 

  • Hopf FW, Cascini MG, Gordon AS, Diamond I, Bonci A (2003) Cooperative activation of dopamine D1 and D2 receptors increases spike firing of nucleus accumbens neurons via G-Protein βγ subunits. J Neurosci 23:5079–5087

    Google Scholar 

  • Hornung JP (2003) The human raphe nuclei and the serotonergic system. J Chem Neuroanat 26:331–343

    Article  PubMed  CAS  Google Scholar 

  • Hornykiewicz O (2001) Chemical neuroanatomy of the basal ganglia — normal and in Parkinson’s disease. J Chem Neuroanat 22:3–12

    Article  PubMed  CAS  Google Scholar 

  • Hornykiewicz O (2002) Brain dopamine: A historical perspective. In: Di Chiara G (ed) Dopamine in CNS I. Springer-Verlag, Berlin. pp. 1–22

    Chapter  Google Scholar 

  • Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554

    Article  PubMed  CAS  Google Scholar 

  • Hu XT, Dong Y, Zhang XF, White FJ (2005) Dopamine D2 receptor-activated Ca2+ signaling modulates voltage-sensitive sodium currents in rat nucleus accumbens neurons. J Neurophysiol 93:1406–1417

    Article  PubMed  CAS  Google Scholar 

  • Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598

    Article  PubMed  CAS  Google Scholar 

  • Ibanez-Sandoval O, Hernandez A, Floran B, Galarraga E, Tapia D, Valdiosera R, Erlij D, Aceves J, Bargas J (2006) Control of the subthalamic innervation of substantia nigra pars reticulata by D1 and D2 dopamine receptors. J Neurophysiol 95:1800–1811

    Google Scholar 

  • Inoue Y, Yao L, Hopf FW, Fan P, Jiang Z, Bonci A, Diamond I (2007) Nicotine and ethanol activate protein kinase A synergistically via Gi βγ ubunits in nucleus accumbens/ventral tegmental cocultures: the role of dopamine D1/D2 and adenosine A2A receptors. J Pharmacol Exp Ther 322:23–29

    Google Scholar 

  • Invernizzi RW, Pierucci M, Calcagno E, Di Giovanni G, Di Matteo V, Benigno A, Esposito E (2007) Selective activation of 5-HT2C receptors stimulates GABAergic function in the rat substantia nigra pars reticulata: A combined in vivo electrophysiological and neurochemical study. Neuroscience 144:1523–1535

    Article  PubMed  CAS  Google Scholar 

  • Izumi T, Iwamoto N, Kitaichi Y, Kato A, Inoue T, Koyama T (2006) Effects of co-administration of a selective serotonin reuptake inhibitor and monoamine oxidase inhibitors on 5-HT-related behavior in rats. Eur J Pharmacol 532:258–264

    Article  PubMed  CAS  Google Scholar 

  • Jackson BP, Wightman RM (1995) Dynamics of 5-hydroxytryptamine released from dopamine neurons in the caudate putamen of the rat. Brain Res 674:163–166

    Article  PubMed  CAS  Google Scholar 

  • Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72:165–229

    PubMed  CAS  Google Scholar 

  • Jin LQ, Wang HY, Friedman E (2001) Stimulated D1 dopamine receptors couple to multiple Galpha proteins in different brain regions. J Neurochem 78:981–990

    Article  PubMed  CAS  Google Scholar 

  • Jones SR, Gainetdinov RR, Jaber M, Giros B, Wightman RM, Caron MG (1998a) Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc Natl Acad Sci USA 95:4029–4034

    Google Scholar 

  • Jones SR, Gainetdinov RR, Wightman RM, Caron MG (1998b) Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J Neurosci 18:1979–1986

    Google Scholar 

  • Kalen P, Skagerberg G, Lindvall O (1988) Projections from the ventral tegmental area and mesencephalic raphe to the dorsal raphe nucleus in the rat. Exp Brain Res 73:69–77

    Article  PubMed  CAS  Google Scholar 

  • Kannari K, Shen H, Arai A, Tomiyama M, Baba M (2006) Reuptake of L-DOPA-derived extracellular dopamine in the striatum with dopaminergic denervation via serotonin transporters. Neurosci Lett 402:62–65

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Mamo D (2003) Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuropsychopharmacol Biol Psychiatry 27:1081–1090

    Article  PubMed  CAS  Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96

    Article  PubMed  CAS  Google Scholar 

  • Khan ZU, Gutierrez A, Martin R, Penafiel A, Rivera A, de la Calle A (2000) Dopamine D5 receptors of rat and human brain. Neuroscience 100:689–699

    Article  PubMed  CAS  Google Scholar 

  • Khan ZU, Mrzljak L, Gutierrez A, de la Calle A, Goldman-Rakic PS (1998) Prominence of the dopamine D2 short isoform in dopaminergic pathways. Proc Natl Acad Sci USA 95:7731–7736

    Article  PubMed  CAS  Google Scholar 

  • Kidd EJ, Laporte AM, Langlois X, Fattaccini CM, Doyen C, Lombard MC, Gozlan H, Hamon M (1993) 5-HT3 receptors in the rat central nervous system are mainly located on nerve fibres and terminals. Brain Res 612:289–298

    Google Scholar 

  • Kilpatrick GJ, Jones BJ, Tyers MB (1987) Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 330:746–748

    Article  PubMed  CAS  Google Scholar 

  • Kitahama K, Nagatsu I, Geffard M, Maeda T (2000) Distribution of dopamine-immunoreactive fibers in the rat brainstem. J Chem Neuroanat 18:1–9

    Article  PubMed  CAS  Google Scholar 

  • Knobelman DA, Kung HF, Lucki I (2000) Regulation of extracellular concentrations of 5-hydroxytryptamine (5-HT) in mouse striatum by 5-HT1A and 5-HT1B receptors. J Pharmacol Exp Ther 292:1111–1117

    PubMed  CAS  Google Scholar 

  • Kostrzewa RM, Reader TA, Descarries L (1998) Serotonin neural adaptations to ontogenetic loss of dopamine neurons in rat brain. J Neurochem 70:889–898

    Article  PubMed  CAS  Google Scholar 

  • Lacey MG (1993) Neurotransmitter receptors and ionic conductances regulating the activity of neurones in substantia nigra pars compacta and ventral tegmental area. Prog Brain Res 99:251–276

    Article  PubMed  CAS  Google Scholar 

  • Lacey MG, Mercuri NB, North RA (1987) Dopamine acts on D2 receptors to increase potassium conductance in neurones of the rat substantia nigra zona compacta. J Physiol 392:397–416

    PubMed  CAS  Google Scholar 

  • Lacey MG, Mercuri NB, North RA (1988) On the potassium conductance increase activated by GABAB and dopamine D2 receptors in rat substantia nigra neurones. J Physiol 401:437–453

    PubMed  CAS  Google Scholar 

  • Lambe EK, Aghajanian GK (2001) The role of Kv1.2-containing potassium channels in serotonin-induced glutamate release from thalamocortical terminals in rat frontal cortex. J Neurosci 21:9955–9963

    PubMed  CAS  Google Scholar 

  • Laporte AM, Koscielniak T, Ponchant M, Verge D, Hamon M, Gozlan H. (1992) Quantitative autoradiographic mapping of 5-HT3 receptors in the rat CNS using [125I]iodo-zacopride and [3H]zacopride as radioligands. Synapse 10:271–281

    Article  PubMed  CAS  Google Scholar 

  • Laurent A, Goaillard JM, Cases O, Lebrand C, Gaspar P, Ropert N (2002) Activity-dependent presynaptic effect of serotonin 1B receptors on the somatosensory thalamocortical transmission in neonatal mice. J Neurosci 22:886–900

    PubMed  CAS  Google Scholar 

  • Lavoie B, Parent A (1990) Immunohistochemical study of the serotoninergic innervation of the basal ganglia in the squirrel monkey. J Comp Neurol 299: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Lee SP, So CH, Rashid AJ, Varghese G, Cheng R, Lança AJ, O'Dowd BF, George SR (2004) Dopamine D1 and D2 receptor Co-activation generates a novel phospholipase C-mediated calcium signal. J Biol Chem 279:35671–35678

    Article  PubMed  CAS  Google Scholar 

  • Lee HS, Kim MA, Waterhouse BD (2005) Retrograde double-labeling study of common afferent projections to the dorsal raphe and the nuclear core of the locus coeruleus in the rat. J Comp Neurol 481:179–193

    Article  PubMed  Google Scholar 

  • Leger L, Wiklund L (1982) Distribution and numbers of indoleamine cell bodies in the cat brainstem determined with Falck-Hillarp fluorescence histochemistry. Brain Res Bull 9:245–251

    Article  PubMed  CAS  Google Scholar 

  • Levey AI, Hersch SM, Rye DB, Sunahara RK, Niznik HB, Kitt CA, Price DL, Maggio R, Brann MR, Ciliax BJ, et al. (1993) Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci USA 90:8861–8865

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Melchitzky DS, Sesack SR, Whitehead RE, Auh S, Sampson A (2001) Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization. J Comp Neurol 432:119–136

    Article  PubMed  CAS  Google Scholar 

  • Lin YJ, Greif GJ, Freedman JE (1996) Permeation and block of dopamine-modulated potassium channels on rat striatal neurons by cesium and barium ions. J Neurophysiol 76:1413–1422

    PubMed  CAS  Google Scholar 

  • Liu XY, Chu XP, Mao LM, Wang M, Lan HX, Li MH, Zhang GC, Parelkar NK, Fibuch EE, Haines M, Neve KA, Liu F, Xiong ZG, Wang JQ (2006) Modulation of D2R-NR2B interactions in response to cocaine. Neuron 52:897–909

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Garcia JA (2006) Serotonergic modulation of spinal sensory circuits. Curr Top Med Chem 6:1987–1996

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Real A, Rodriguez-Pallares J, Guerra MJ, Labandeira-Garcia JL (2003) Localization and functional significance of striatal neurons immunoreactive to aromatic L-amino acid decarboxylase or tyrosine hydroxylase in rat Parkinsonian models. Brain Res 969:135–146

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Gimenez JF, Mengod G, Palacios JM, Vilaro MT (2001) Regional distribution and cellular localization of 5-HT2C receptor mRNA in monkey brain: comparison with [3H]mesulergine binding sites and choline acetyltransferase mRNA. Synapse 42:12–26

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Kannari K, Shen H, Arai A, Tomiyama M, Matsunaga M, Suda T (2003) Rapid induction of serotonergic hyperinnervation in the adult rat striatum with extensive dopaminergic denervation. Neurosci Lett 343:17–20

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Nagata K, Yoshida Y, Kannari K (2005) Serotonergic hyperinnervation into the dopaminergic denervated striatum compensates for dopamine conversion from exogenously administered l-DOPA. Brain Res 1046:230–233

    Article  PubMed  CAS  Google Scholar 

  • Mangiavacchi S, Wolf ME (2004) D1 dopamine receptor stimulation increases the rate of AMPA receptor insertion onto the surface of cultured nucleus accumbens neurons through a pathway dependent on protein kinase A. J Neurochem 88:1261–1271

    Article  PubMed  CAS  Google Scholar 

  • Mannoury la Cour C, Vidal S, Pasteau V, Cussac D, Millan MJ (2007) Dopamine D1 receptor coupling to Gs/olf and Gq in rat striatum and cortex: a scintillation proximity assay (SPA)/antibody-capture characterization of benzazepine agonists. Neuropharmacology 52:1003–1014

    Article  PubMed  CAS  Google Scholar 

  • Mansour A, Meador-Woodruff JH, Zhou Q, Civelli O, Akil H, Watson SJ (1992) A comparison of D1 receptor binding and mRNA in rat brain using receptor autoradiographic and in situ hybridization techniques. Neuroscience 46:959–971

    Article  PubMed  CAS  Google Scholar 

  • Marcusson J, Eriksson K (1988) [3H]GBR-12935 binding to dopamine uptake sites in the human brain. Brain Res 457:122–129

    Article  PubMed  CAS  Google Scholar 

  • Martin-Ruiz R, Ugedo L, Honrubia MA, Mengod G, Artigas F (2001) Control of serotonergic neurons in rat brain by dopaminergic receptors outside the dorsal raphe nucleus. J Neurochem 77:762–775

    Article  PubMed  CAS  Google Scholar 

  • Masson J, Sagne C, Hamon M, El Mestikawy S (1999) Neurotransmitter transporters in the central nervous system. Pharmacol Rev 51:439–464

    PubMed  CAS  Google Scholar 

  • Matsumoto M, Yoshioka M, Togashi H, Ikeda T, and Saito H (1996) Functional regulation by dopamine receptors of serotonin release from the rat hippocampus: In vivo microdialysis study. Naunyn-Schmiedeberg’s Arch Pharmacol 353:621– 629.

    Article  CAS  Google Scholar 

  • Meador-Woodruff JH, Mansour A, Healy DJ, Kuehn R, Zhou QY, Bunzow JR, Akil H, Civelli O, Watson SJ, Jr (1991) Comparison of the distributions of D1 and D2 dopamine receptor mRNAs in rat brain. Neuropsychopharmacology 5:231–242

    Google Scholar 

  • Mennicken F, Savasta M, Peretti-Renucci R, Feuerstein C (1992) Autoradiographic localization of dopamine uptake sites in the rat brain with 3H-GBR 12935. J Neural Transm Gen Sect 87:1–14

    Article  PubMed  CAS  Google Scholar 

  • Mercuri NB, Saiardi A, Bonci A, Picetti R, Calabresi P, Bernardi G, et al (1997) Loss of autoreceptor function in dopaminergic neurons from dopamine D2 receptor deficient mice. Neuroscience 79:323–327

    Article  PubMed  CAS  Google Scholar 

  • Miller DW, Abercrombie ED (1999) Role of high-affinity dopamine uptake and impulse activity in the appearance of extracellular dopamine in striatum after administration of exogenous L-DOPA: studies in intact and 6-hydroxydopamine-treated rats. J Neurochem 724:1516–1522

    Article  Google Scholar 

  • Miller GM, Yatin SM, De La Garza R 2nd, Goulet M, Madras BK (2001) Cloning of dopamine, norepinephrine and serotonin transporters from monkey brain: relevance to cocaine sensitivity. Brain Res Mol Brain Res 87:124–143

    Article  PubMed  CAS  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    PubMed  CAS  Google Scholar 

  • Miyazaki T, Lacey MG (1998) Presynaptic inhibition by dopamine of a discrete component of GABA release in rat substantia nigra pars reticulata. J Physiol 513:805–817

    Article  PubMed  CAS  Google Scholar 

  • Mizutani H, Hori T, Takahashi T (2006) 5-HT1B receptor-mediated presynaptic inhibition at the calyx of Held of immature rats. Eur J Neurosci 24:1946–1954.

    Article  PubMed  Google Scholar 

  • Moukhles H, Bosler O, Bolam JP, Vallee A, Umbriaco D, Geffard M, et al (1997) Quantitative and morphometric data indicate precise cellular interactions between serotonin terminals and postsynaptic targets in rat substantia nigra. Neuroscience 76:1159–1171

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Halaris AE, Jones BE (1978) Serotonin neurons of the midbrain raphe: ascending projections. J Comp Neurol 180:417–438.

    Article  PubMed  CAS  Google Scholar 

  • Morales M, Battenberg E, Bloom FE (1998) Distribution of neurons expressing immunoreactivity for the 5HT3 receptor subtype in the rat brain and spinal cord. J Comp Neurol 402:385–401

    Article  PubMed  CAS  Google Scholar 

  • Mori S, Ueda S, Yamada H, Takino T, Sano Y (1985) Immunohistochemical demonstration of serotonin nerve fibers in the corpus striatum of the rat, cat and monkey. Anat Embryol (Berl) 173:1–5

    Article  CAS  Google Scholar 

  • Mori S, Matsuura T, Takino T, Sano Y (1987) Light and electron microscopic immunohistochemical studies of serotonin nerve fibers in the substantia nigra of the rat, cat and monkey. Anat Embryol (Berl) 176:13–18

    Article  CAS  Google Scholar 

  • Morikawa H, Manzoni OJ, Crabbe JC, Williams JT (2000) Regulation of central synaptic transmission by 5-HT1B auto- and heteroreceptors. Mol Pharmacol 58:1271–1278

    PubMed  CAS  Google Scholar 

  • Mossner R, Simantov R, Marx A, Lesch KP, Seif I (2006) Aberrant accumulation of serotonin in dopaminergic neurons. Neurosci Lett 401:49–54

    Article  PubMed  CAS  Google Scholar 

  • Mrini A, Soucy JP, Lafaille F, Lemoine P, Descarries L (1995) Quantification of the serotonin hyperinnervation in adult rat neostriatum after neonatal 6-hydroxydopamine lesion of nigral dopamine neurons. Brain Res 669:303–308

    Article  PubMed  CAS  Google Scholar 

  • Mura A, Linder JC, Young SJ, Groves PM (2000) Striatal cells containing aromatic L-amino acid decarboxylase: an immunohistochemical comparison with other classes of striatal neurons. Neuroscience 98:501–511

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu M, Lapiz MD, Tanaka E, Grenhoff J (1998) Serotonin inhibits synaptic glutamate currents in rat nucleus accumbens neurons via presynaptic 5-HT1B receptors. Eur J Neurosci 10:2371–2379

    Article  PubMed  CAS  Google Scholar 

  • Nasif FJ, Hu XT, White FJ (2005) Repeated cocaine administration increases voltage-sensitive calcium currents in response to membrane depolarization in medial prefrontal cortex pyramidal neurons. J Neurosci 25:3674–3679

    Article  PubMed  CAS  Google Scholar 

  • Nayak SV, Ronde P, Spier AD, Lummis SC, Nichols RA (1999) Calcium changes induced by presynaptic 5-HT3 serotonin receptors on isolated terminals from various regions of the rat brain. Neuroscience 91:107–117

    Article  PubMed  CAS  Google Scholar 

  • Nelson EL, Liang CL, Sinton CM, German DC (1996) Midbrain dopaminergic neurons in the mouse: computer-assisted mapping. J Comp Neurol 369:361–371

    Article  PubMed  CAS  Google Scholar 

  • Nemeroff CB, Owens MJ (2002) Treatment of mood disorders. Nat Neurosci 5 Suppl:1068–1070

    Article  PubMed  CAS  Google Scholar 

  • Neve KA, Neve RL (1997) Molecular biology of dopamine receptors. In: Neve KA and Neve RL (ed) The dopamine receptors. Humana Press, Totowa, New Jersey. pp. 27–76.

    Google Scholar 

  • Neve KA, Seamans JK, Trantham-Davidson H (2004) Dopamine receptor signaling. J Recept Signal Transduct Res 24:165–205

    Article  PubMed  CAS  Google Scholar 

  • Nichols RA, Mollard P (1996) Direct observation of serotonin 5-HT3 receptor-induced increases in calcium levels in individual brain nerve terminals. J Neurochem 67:581–592

    Article  PubMed  CAS  Google Scholar 

  • Nicola SM, Surmeier J, Malenka RC (2000) Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 23:185–215

    Article  PubMed  CAS  Google Scholar 

  • Nirenberg MJ, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM (1996) The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J Neurosci 16:436–447

    PubMed  CAS  Google Scholar 

  • Nirenberg MJ, Chan J, Pohorille A, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM (1997a) The dopamine transporter: comparative ultrastructure of dopaminergic axons in limbic and motor compartments of the nucleus accumbens. J Neurosci 17:6899–6907

    Google Scholar 

  • Nirenberg MJ, Chan J, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM (1997b) Immunogold localization of the dopamine transporter: an ultrastructural study of the rat ventral tegmental area. J Neurosci 17:5255–5262

    Google Scholar 

  • Nocjar C, Roth BL, Pehek EA (2002) Localization of 5-HT2A receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience 111:163–176

    Article  PubMed  CAS  Google Scholar 

  • North RA, Uchimura N (1989) 5-Hydroxytryptamine acts at 5-HT2 receptors to decrease potassium conductance in rat nucleus accumbens neurones. J Physiol 417:1–12

    PubMed  CAS  Google Scholar 

  • Oak JN, Oldenhof J, Van Tol HH (2000) The dopamine D4 receptor: one decade of research. Eur J Pharmacol 405:303–327

    Article  PubMed  CAS  Google Scholar 

  • Obeso JA, Olanow CW, Nutt JG (2000) Levodopa motor complications in Parkinson’s disease. Trends Neurosci 23:S2–7

    Article  PubMed  CAS  Google Scholar 

  • Okumura T, Dobolyi A, Matsuyama K, Mori F, Mori S (2000) The cat neostriatum: relative distribution of cholinergic neurons versus serotonergic fibers. Brain Dev 22:S27–37

    Article  PubMed  Google Scholar 

  • Olanow CW (2004) The scientific basis for the current treatment of Parkinson's disease. Annu Rev Med 55:41–60

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW, Obeso JA, Stocchi F (2006) Continuous dopamine-receptor treatment of Parkinson’s disease: scientific rationale and clinical implications. Lancet Neurol 5:677–687

    Article  PubMed  CAS  Google Scholar 

  • Olijslagers JE, Werkman TR, McCreary AC, Siarey R, Kruse CG, Wadman WJ (2004) 5-HT2 receptors differentially modulate dopamine-mediated auto-inhibition in A9 and A10 midbrain areas of the rat. Neuropharmacology 46:504–510

    Article  PubMed  CAS  Google Scholar 

  • Oorschot DE (1996) Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the cavalieri and optical disector methods. J Comp Neurol 366:580–599

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly CA, Reith ME (1988) Uptake of [3H]serotonin into plasma membrane vesicles from mouse cerebral cortex. J Biol Chem 263:6115–6121

    PubMed  Google Scholar 

  • Patel S, Roberts J, Moorman J, Reavill C (1995) Localization of serotonin-4 receptors in the striatonigral pathway in rat brain. Neuroscience 69:1159–1167

    Article  PubMed  CAS  Google Scholar 

  • Paterson DS, Trachtenberg FL, Thompson EG, Belliveau RA, Beggs AH, Darnall R, Chadwick AE, Krous HF, Kinney HC (2006) Multiple serotonergic brainstem abnormalities in sudden infant death syndrome. JAMA 296:2124–2132

    Article  PubMed  CAS  Google Scholar 

  • Perez MF, White FJ, Hu XT (2006) Dopamine D2 receptor modulation of K+ channel activity regulates excitability of nucleus accumbens neurons at different membrane potentials. J Neurophysiol 96:2217–2228

    Article  PubMed  CAS  Google Scholar 

  • Pessia M, Jiang ZG, North RA, Johnson SW (1994) Actions of 5-hydroxytryptamine on ventral tegmental area neurons of the rat in vitro. Brain Res 654:324–330

    Article  PubMed  CAS  Google Scholar 

  • Peters JL, Michael AC (2000) Changes in the kinetics of dopamine release and uptake have differential effects on the spatial distribution of extracellular dopamine concentration in rat striatum. J Neurochem 74:1563–1673

    Article  PubMed  CAS  Google Scholar 

  • Peterson JD, Wolf ME, White FJ (2006) Repeated amphetamine administration decreases D1 dopamine receptor-mediated inhibition of voltage-gated sodium currents in the prefrontal cortex. J Neurosci 26:3164–3168

    Article  PubMed  CAS  Google Scholar 

  • Peyron C, Luppi PH, Kitahama K, Fort P, Hermann DM, Jouvet M (1995) Origin of the dopaminergic innervation of the rat dorsal raphe nucleus. Neuroreport 6:2527–2531

    Article  PubMed  CAS  Google Scholar 

  • Pickel VM, Chan J (1999) Ultrastructural localization of the serotonin transporter in limbic and motor compartments of the nucleus accumbens. J Neurosci 19:7356–7366

    PubMed  CAS  Google Scholar 

  • Pineyro G, Blier P (1999) Autoregulation of serotonin neurons: role in antidepressant drug action. Pharmacol Rev 51:533–591

    PubMed  CAS  Google Scholar 

  • Pisani A, Bernardi G, Ding J, Surmeier DJ (2007) Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci 30:545–553

    Article  PubMed  CAS  Google Scholar 

  • Pletscher A, Shore PA, Brodie BB (1956) Serotonin as a mediator of reserpine action in brain. J Pharmacol Exp Ther 116:84–89

    PubMed  CAS  Google Scholar 

  • Povlock SL, Amara SG (1997) The structure and function of norepinephrine, dopamine, and serotonin transporters. In: Reith MEA (ed) Neurotransmitter transporters: structure, function, and regulation. Humana Press, Totowa, New Jersey. pp. 1–28

    Google Scholar 

  • Prensa L, Parent A (2001) The nigrostriatal pathway in the rat: A single-axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments. J Neurosci 21:7247–7260

    PubMed  CAS  Google Scholar 

  • Prisco S, Esposito E (1995) Differential effects of acute and chronic fluoxetine administration on the spontaneous activity of dopaminergic neurones in the ventral tegmental area. Br J Pharmacol 116:1923–1931

    PubMed  CAS  Google Scholar 

  • Pristupa ZB, Wilson JM, Hoffman BJ, Kish SJ, Niznik HB (1994) Pharmacological heterogeneity of the cloned and native human dopamine transporter: disassociation of [3H]WIN 35,428 and [3H]GBR 12,935 binding. Mol Pharmacol 45:125–135

    PubMed  CAS  Google Scholar 

  • Puig MV, Celada P, Diaz-Mataix L, Artigas F (2003) In vivo modulation of the activity of pyramidal neurons in the rat medial prefrontal cortex by 5-HT2A receptors: relationship to thalamocortical afferents. Cereb Cortex 13:870–882

    Article  PubMed  Google Scholar 

  • Ramamoorthy S, Bauman AL, Moore KR, Han H, Yang-Feng T, Chang AS, Ganapathy V, Blakely RD (1993) Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci USA 90:2542–2546

    Article  PubMed  CAS  Google Scholar 

  • Rashid AJ, O’Dowd BF, Verma V, George SR (2007a) Neuronal Gq/11-coupled dopamine receptors: an uncharted role for dopamine. Trends Pharmacol Sci 28:551–555

    Google Scholar 

  • Rashid AJ, So CH, Kong MM, Furtak T, El-Ghundi M, Cheng R, O'Dowd BF, George SR (2007b) D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci USA 104:654–659

    Google Scholar 

  • Richfield EK (1991) Quantitative autoradiography of the dopamine uptake complex in rat brain using [3H]GBR 12935: binding characteristics. Brain Res 540:1–13

    Article  PubMed  CAS  Google Scholar 

  • Rick CE, Stanford IM, Lacey MG (1995) Excitation of rat substantia nigra pars reticulata neurons by 5-HT in vitro: evidence for a direct action mediated by 5-HT2C receptors. Neuroscience 69:903–913

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez JJ, Garcia DR, Pickel VM (1999) Subcellular distribution of 5-hydroxytryptamine2A and N-methyl-D-aspartate receptors within single neurons in rat motor and limbic striatum. J Comp Neurol 413:219–231

    Google Scholar 

  • Schmitz Y, Benoit-Marand M, Gonon F, Sulzer D (2003) Presynaptic regulation of dopaminergic neurotransmission. J Neurochem 87:273–289

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (2007) Multiple dopamine functions at different time courses. Annu Rev Neurosci 30:259–288

    Article  PubMed  CAS  Google Scholar 

  • Seeburg DP, Liu X, Chen C (2004) Frequency-dependent modulation of retinogeniculate transmission by serotonin. J Neurosci 24:10950–10962

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Lee T (1975) Antipsychotic drugs: Direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188:1217–1219

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (1980) Brain dopamine receptors. Pharmacol Rev 32:229–313

    PubMed  CAS  Google Scholar 

  • Sesack SR, Hawrylak VA, Matus C, Guido MA, Levey AI (1998) Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J Neurosci 18:2697–2708

    PubMed  CAS  Google Scholar 

  • Sesack SR (2002) Synaptology of dopamine neurons. In: Di Chiara G (ed) Dopamine in the CNS I. Springer-Verlag, Berlin. pp 63–119

    Chapter  Google Scholar 

  • Shaskan EG, Snyder SH (1970) Kinetics of serotonin accumulation into slices from rat brain: relationship to catecholamine uptake. J Pharmacol Exp Ther 175:404–418

    PubMed  CAS  Google Scholar 

  • Shen HW, Hagino Y, Kobayashi H, Shinohara-Tanaka K, Ikeda K, Yamamoto H, et al. (2004) Regional differences in extracellular dopamine and serotonin assessed by in vivo microdialysis in mice lacking dopamine and/or serotonin transporters. Neuropsychopharmacology 29:1790–1799

    Article  PubMed  CAS  Google Scholar 

  • Shioda K, Nisijima K, Yoshino T, Kato S (2004) Extracellular serotonin, dopamine and glutamate levels are elevated in the hypothalamus in a serotonin syndrome animal model induced by tranylcypromine and fluoxetine. Prog Neuropsychopharmacol Biol Psychiatry 28:633–640

    Article  PubMed  CAS  Google Scholar 

  • Shore PA, Silver SL, Brodie BB (1955) Interaction of reserpine, serotonin, and lysergic acid diethylamide in brain. Science 122:284–285.

    Article  PubMed  CAS  Google Scholar 

  • Smiley JF, Goldman-Rakic PS (1996) Serotonergic axons in monkey prefrontal cerebral cortex synapse predominantly on interneurons as demonstrated by serial section electron microscopy. J Comp Neurol 367:431–443

    Article  PubMed  CAS  Google Scholar 

  • Smith TD, Kuczenski R, George-Friedman K, Malley JD, Foote SL (2000) In vivo microdialysis assessment of extracellular serotonin and dopamine levels in awake monkeys during sustained fluoxetine administration. Synapse 38:460–470

    CAS  Google Scholar 

  • Snyder GL, Allen PB, Fienberg AA, Valle CG, Huganir RL, Nairn AC, Greengard P (2000) Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo. J Neurosci 20:4480–4488

    PubMed  CAS  Google Scholar 

  • Soghomonian JJ, Doucet G, Descarries L (1987) Serotonin innervation in adult rat neostriatum. I. Quantified regional distribution. Brain Res 425:85–100

    Google Scholar 

  • Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151

    Article  PubMed  CAS  Google Scholar 

  • Sora I, Hall FS, Andrews AM, Itokawa M, Li XF, Wei HB, et al (2001) Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. Proc Natl Acad Sci USA 98:5300–5305

    Article  PubMed  CAS  Google Scholar 

  • Stanford IM, Lacey MG (1996) Differential actions of serotonin, mediated by 5-HT1B and 5-HT2C receptors, on GABA-mediated synaptic input to rat substantia nigra pars reticulata neurons in vitro. J Neurosci 16:7566–7573

    PubMed  CAS  Google Scholar 

  • Stamford JA, Kruk ZL, Millar J (1990) Striatal dopamine terminals release serotonin after 5-HTP pretreatment: in vivo voltammetric data. Brain Res 515:173–180

    Article  PubMed  CAS  Google Scholar 

  • Stamford JA, Davidson C, McLaughlin DP, Hopwood SE (2000) Control of dorsal raphe 5-HT function by multiple 5-HT1 autoreceptors: parallel purposes or pointless plurality Trends Neurosci 23:459–465

    Article  PubMed  CAS  Google Scholar 

  • Stanford SC (1999) SSRI-induced changes in catecholaminergic transmission. In: Stanford SC (ed) Selective serotonin reuptake inhibitors (SSRIs): Past, present and future. RG Landes Company, Austin, Texas. pp. 147–169

    Google Scholar 

  • Steinbusch HW, Verhofstad AA, Joosten HW (1978) Localization of serotonin in the central nervous system by immunohistochemistry: description of a specific and sensitive technique and some applications. Neuroscience 3:811–819

    Article  PubMed  CAS  Google Scholar 

  • Steinbusch HW (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 6:557–618

    Article  PubMed  CAS  Google Scholar 

  • Sternbach H (1991) The serotonin syndrome. Am J Psychiatry 148:705–713

    PubMed  CAS  Google Scholar 

  • Steward LJ, Bufton KE, Hopkins PC, Davies WE, Barnes NM (1993) Reduced levels of 5-HT3 receptor recognition sites in the putamen of patients with Huntington’s disease. Eur J Pharmacol 242:137–143

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D (2007) Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci 30:244–250

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Zhao Y, Wolf M (2005) Dopamine receptor stimulation modulates AMPA receptor synaptic insertion in prefrontal cortex neurons. J Neurosci 25:7342–7351

    Article  PubMed  CAS  Google Scholar 

  • Sur C, Betz H, Schloss P (1996) Immunocytochemical detection of the serotonin transporter in rat brain. Neuroscience 73:217–231

    Article  PubMed  CAS  Google Scholar 

  • Surmeier DJ, Song WJ, Yan Z (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 16:6579–6591

    PubMed  CAS  Google Scholar 

  • Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30:228–235

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Hurd YL, Sokoloff P, Schwartz JC, Sedvall G (1998) D3 dopamine receptor mRNA is widely expressed in the human brain. Brain Res 779:58–74

    Article  PubMed  CAS  Google Scholar 

  • Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P (2004) DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol. 44:269–296

    Article  PubMed  CAS  Google Scholar 

  • Svenningsson P, Tzavara ET, Liu F, Fienberg AA, Nomikos GG, Greengard P (2002a) DARPP-32 mediates serotonergic neurotransmission in the forebrain. Proc Natl Acad Sci USA 99:3188–3193

    Google Scholar 

  • Svenningsson P, Tzavara ET, Witkin JM, Fienberg AA, Nomikos GG, Greengard P (2002b) Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects of fluoxetine (Prozac). Proc Natl Acad Sci USA 99:3182–3187

    Google Scholar 

  • Svenningsson P, Tzavara ET, Carruthers R, Rachleff I, Wattler S, Nehls M, McKinzie DL, Fienberg AA, Nomikos GG, Greengard P (2003) Diverse psychotomimetics act through a common signaling pathway. Science 302:1412–1415

    Article  PubMed  CAS  Google Scholar 

  • Svenningsson P, Tzavara ET, Qi H, Carruthers R, Witkin JM, Nomikos GG, Greengard P (2007) Biochemical and behavioral evidence for antidepressant-like effects of 5-HT6 receptor stimulation. J Neurosci 27:4201–4209

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Kannari K, Maeda T, Tomiyama M, Suda T and Matsunaga M (1999) Role of serotonergic neurons in L-DOPA-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats. NeuroReport 10:631–634

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S (2006) Dopaminergic control of working memory and its relevance to schizophrenia: a circuit dynamics perspective. Neuroscience 139:153–171

    Article  PubMed  CAS  Google Scholar 

  • Tecott LH, Maricq AV, Julius D (1993) Nervous system distribution of the serotonin 5-HT3 receptor mRNA. Proc Natl Acad Sci USA 90:1430–1434

    Article  PubMed  CAS  Google Scholar 

  • Tepper JM, Martin LP, Anderson DR (1995) GABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons. J Neurosci 15:3092–3103

    PubMed  CAS  Google Scholar 

  • Tork I (1990) Anatomy of the serotonergic system. Ann N Y Acad Sci 600:9–34

    Google Scholar 

  • Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4:13–25

    Article  PubMed  CAS  Google Scholar 

  • Twarog BM, Page IH (1953) Serotonin content of some mammalian tissues and urine and a method for its determination. Am J Physiol 175:157–161

    PubMed  CAS  Google Scholar 

  • Usiello A, Baik JH, Rouge-Pont F, Picetti R, Dierich A, LeMeur M, et al (2000) Distinct functions of the two isoforms of dopamine D2 receptors. Nature 408:199–203

    Article  PubMed  CAS  Google Scholar 

  • Van Bockstaele EJ, Cestari DM, Pickel VM (1994) Synaptic structure and connectivity of serotonin terminals in the ventral tegmental area: potential sites for modulation of mesolimbic dopamine neurons. Brain Res 647:307–322

    Article  PubMed  Google Scholar 

  • Van Bockstaele EJ, Chan J, Pickel VM (1996) Pre- and postsynaptic sites for serotonin modulation of GABA-containing neurons in the shell region of the rat nucleus accumbens. J Comp Neurol 371:116–128

    Article  PubMed  Google Scholar 

  • Van Bockstaele EJ, Pickel VM (1993) Ultrastructure of serotonin-immunoreactive terminals in the core and shell of the rat nucleus accumbens: cellular substrates for interactions with catecholamine afferents. J Comp Neurol 334:603–617

    Article  PubMed  Google Scholar 

  • van Hooft JA, Vijverberg HP (2000) 5-HT3 receptors and neurotransmitter release in the CNS: a nerve ending story? Trends Neurosci 23:605–610

    Google Scholar 

  • van Hooft JA, Yakel JL (2003) 5-HT3 receptors in the CNS: 3B or not 3B? Trends Pharmacol Sci 24:157–160

    Google Scholar 

  • van Rossum JM (1966) The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn Ther 160:492–494

    PubMed  Google Scholar 

  • Vanhatalo S, Soinila S (1994) Pharmacological characterization of serotonin synthesis and uptake suggest a false neurotransmitter role for serotonin in the pituitary intermediate lobe. Neurosci Res 21:143–149

    Article  PubMed  CAS  Google Scholar 

  • Vanhatalo S, Soinila S (1995) Release of false transmitter serotonin from the dopaminergic nerve terminals of the rat pituitary intermediate lobe. Neurosci Res 22:367–374

    Article  PubMed  CAS  Google Scholar 

  • Vanhatalo S, Soinila S (1998) Serotonin is not synthesized, but specifically transported in the neurons of the hypothalamic dorsomedial nucleus. Eur J Neurosci 10:1930–1935

    Article  PubMed  CAS  Google Scholar 

  • Vilaro MT, Cortes R, Mengod G (2005) Serotonin 5-HT4 receptors and their mRNAs in rat and guinea pig brain: distribution and effects of neurotoxic lesions. J Comp Neurol 484:418–439

    Article  PubMed  CAS  Google Scholar 

  • Vitalis T, Cases O, Callebert J, Launay JM, Price DJ, Seif I, Gaspar P (1998) Effects of monoamine oxidase A inhibition on barrel formation in the mouse somatosensory cortex: determination of a sensitive developmental period. J Comp Neurol 393:169–184

    Article  PubMed  CAS  Google Scholar 

  • Waeber C, Dixon K, Hoyer D, Palacios JM (1988)Localisation by autoradiography of neuronal 5-HT3 receptors in the mouse CNS. Eur J Pharmacol 151:351–362

    Article  PubMed  CAS  Google Scholar 

  • Waeber C, Sebben M, Grossman C, Javoy-Agid F, Bockaert J, Dumuis A (1993) [3H]-GR113808 labels 5-HT4 receptors in the human and guinea-pig brain. Neuroreport 4:1239–1242

    Article  PubMed  CAS  Google Scholar 

  • Waeber C, Sebben M, Bockaert J, Dumuis A (1996) Regional distribution and ontogeny of 5-HT4 binding sites in rat brain. Behav Brain Res 73:259–262

    Article  PubMed  CAS  Google Scholar 

  • Wang HY, Undie AS, Friedman E (1995) Evidence for the coupling of Gq protein to D1-like dopamine sites in rat striatum: possible role in dopamine-mediated inositol phosphate formation. Mol Pharmacol 48:988–994

    PubMed  CAS  Google Scholar 

  • West AR, Grace AA (2002) Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis. J Neurosci 22:294–304

    PubMed  CAS  Google Scholar 

  • Whitaker-Azmitia PM (1999) The discovery of serotonin and its role in neuroscience. Neuropsychopharmacology 21(2 Suppl):2S–8S

    PubMed  CAS  Google Scholar 

  • White FJ (1996) Synaptic regulation of mesocorticolimbic dopamine neurons. Annu Rev Neurosci 19:405–436

    Article  PubMed  CAS  Google Scholar 

  • Wiklund L, Leger L, Persson M (1981) Monoamine cell distribution in the cat brain stem. A fluorescence histochemical study with quantification of indolaminergic and locus coeruleus cell groups. J Comp Neurol 203:613–647

    Article  PubMed  CAS  Google Scholar 

  • Wong AH, Van Tol HH (2003) The dopamine D4 receptors and mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 27:1091–1099

    Article  PubMed  CAS  Google Scholar 

  • Wong DT, Bymaster FP, Engleman EA (1995) Prozac (fluoxetine, Lilly 110140), the first selective serotonin uptake inhibitor and an antidepressant drug: twenty years since its first publication. Life Sci 57:411–441

    Article  PubMed  CAS  Google Scholar 

  • Wong DT, Perry KW, Bymaster FP (2005) Case history: the discovery of fluoxetine hydrochloride (Prozac). Nat Rev Drug Discov 4:764–774

    PubMed  CAS  Google Scholar 

  • Woolley DW, Shaw W (1954) A biochemical and pharmacological suggestion about certain mental disorders. Proc Natl Acad Sci USA 40:228–231

    Article  PubMed  CAS  Google Scholar 

  • Wu JP, Hablitz JJ (2005) Cooperative activation of D1 and D2 dopamine receptors enhances a hyperpolarization-activated inward current in layer I interneurons. J Neurosci 25:6322–6328

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Dougherty JJ, Nichols RA (2006) Dopamine receptor regulation of Ca2+ levels in individual isolated nerve terminals from rat striatum: comparison of presynaptic D1-like and D2-like receptors. J Neurochem 98:481–494

    Article  PubMed  CAS  Google Scholar 

  • Xiang Z, Wang L, Kitai ST (2005) Modulation of spontaneous firing in rat subthalamic neurons by 5-HT receptor subtypes. J Neurophysiol 93:1145–1157

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Sari Y, Zhou FC (2004) Selective serotonin reuptake inhibitor disrupts organization of thalamocortical somatosensory barrels during development. Dev Brain Res 150:151–161

    Article  CAS  Google Scholar 

  • Yamada H, Aimi Y, Nagatsu I, Taki K, Kudo M, Arai R (2007) Immunohistochemical detection of l-DOPA-derived dopamine within serotonergic fibers in the striatum and the substantia nigra pars reticulata in Parkinsonian model rats. Neurosci Res 59:1–7

    Article  PubMed  CAS  Google Scholar 

  • Yelin R, Schuldiner S (2002) Vesicular neurotransmitter transporters: pharmacology, biochemistry, and molecular analysis. In: Reith MEA (ed) Neurotransmitter transporters: structure, function, and regulation. Humana Press, Totowa, New Jersey. pp 313–354

    Chapter  Google Scholar 

  • Yung KK, Bolam JP, Smith AD, Hersch SM, Ciliax BJ, Levey AI (1995) Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65:709–730

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Andren PE, Svenningsson P (2007) Changes on 5-HT2 receptor mRNAs in striatum and subthalamic nucleus in Parkinson disease model. Physiol Behav 92:29–33

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Sulzer D (2004) Frequency-dependent modulation of dopamine release by nicotine. Nat Neurosci 7:581–582

    Google Scholar 

  • Zhong G, Diaz-Rios M, Harris-Warrick RM (2006) Intrinsic and functional differences among commissural interneurons during fictive locomotion and serotonergic modulation in the neonatal mouse. J Neurosci 26:6509–6517

    Article  PubMed  CAS  Google Scholar 

  • Zhou FC, Lesch KP, Murphy DL (2002) Serotonin uptake into dopamine neurons via dopamine transporters: a compensatory alternative. Brain Res 942:109–119

    Article  PubMed  CAS  Google Scholar 

  • Zhou F-M, Dani JA (2006) Antidepressants alter mesostriatal dopamine interactions with serotonin signaling. Current Psychiatry Reviews 2:453–461

    Article  CAS  Google Scholar 

  • Zhou F-M, Hablitz JJ (1999) Activation of serotonin receptors modulates synaptic transmission in rat cerebral cortex. J Neurophysiol 82:2989–2999

    PubMed  CAS  Google Scholar 

  • Zhou F-M, Liang Y, Dani JA (2001) Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci 4:1224–1249

    Article  PubMed  CAS  Google Scholar 

  • Zhou F-M, Liang Y, Salas R, Zhang L, De Biasi M, Dani JA (2005) Corelease of dopamine and serotonin from striatal dopamine terminals. Neuron 46:65–74

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are supported by grants from the American Parkinson Disease Association, the National Alliance for Research on Schizophrenia and Depression, and the National Institutes of Health (NIDA, NIMH, and NINDS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Dani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhou, FM., Dani, J.A. (2009). Dopamine and Serotonin Crosstalk Within the Dopaminergic and Serotonergic Systems. In: Gutierrez, R. (eds) Co-Existence and Co-Release of Classical Neurotransmitters. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09622-3_9

Download citation

Publish with us

Policies and ethics