Skip to main content

Glutamate Co-Release by Monoamine Neurons

  • Chapter
  • First Online:
Co-Existence and Co-Release of Classical Neurotransmitters

Abstract

A wide range of indirect data obtained during the last two decades has suggested that monoamine neurons may co-release neurotransmitters. Ultrastructural investigations have consistently reported that these neurons, including dopamine, serotonin and norepinephrine neurons establish both junctional (i.e. synaptic) and non-junctional (i.e. non-synaptic) axon terminals. The hypothesis that some of these terminals can mediate synaptic glutamate release has received strong support from cell culture studies as well as indirect support from electrophysiological recordings obtained in slice preparations and in intact animals. The molecular identification of vesicular glutamate transporters (VGluTs) in recent years has provided a new impetus and a new strategy to confirm the glutamatergic phenotype of neurons. A number of recent results now confirm that while many serotonin neurons express VGluT3, a subset of norepinephrine and dopamine neurons express VGluT2, thus supporting the hypothesis of glutamate co-transmission. The possibility that the neurotransmitter repertoire of central monoamine neurons may be plastic during development and in the context of activity-dependent neuronal plasticity or disease is now a major direction of current research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aihara Y, Mashima H, Onda H, Hisano S, Kasuya H, Hori T, Yamada S, Tomura H, Yamada Y, Inoue I, Kojima I, Takeda J (2000) Molecular cloning of a novel brain-type Na(+)-dependent inorganic phosphate cotransporter. J Neurochem 74:2622–2625

    Article  PubMed  CAS  Google Scholar 

  • Antonopoulos J, Dori I, Dinopoulos A, Chiotelli M, Parnavelas JG (2002) Postnatal development of the dopaminergic system of the striatum in the rat. Neuroscience 110:245–256

    Article  PubMed  CAS  Google Scholar 

  • Beaudet A, Descarries L (1978) The monoamine innervation of rat cerebral cortex: synaptic and nonsynaptic axon terminals. Neuroscience 3:851–860

    Article  PubMed  CAS  Google Scholar 

  • Bellocchio EE, Hu H, Pohorille A, Chan J, Pickel VM, Edwards RH (1998) The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission. J Neurosci 18:8648–8659

    PubMed  CAS  Google Scholar 

  • Bellocchio EE, Reimer RJ, Fremeau RT Jr, Edwards RH (2000) Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289:957–960

    Article  PubMed  CAS  Google Scholar 

  • Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhauser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620

    Article  PubMed  CAS  Google Scholar 

  • Boulland JL, Qureshi T, Seal RP, Rafiki A, Gundersen V, Bergersen LH, Fremeau RT Jr, Edwards RH, Storm-Mathisen J, Chaudhry FA (2004) Expression of the vesicular glutamate transporters during development indicates the widespread corelease of multiple neurotransmitters. J Comp Neurol 480:264–280

    Article  PubMed  CAS  Google Scholar 

  • Bourque MJ, Trudeau LE (2000) GDNF enhances the synaptic efficacy of dopaminergic neurons in culture. Eur J Neurosci 12:3172–180

    Article  PubMed  CAS  Google Scholar 

  • Bérubé-Carriere N, Riad M, Dal Bo G, Trudeau L-E, Descarries L Colocalisation of dopamine and glutamate in axon terminals of VTA neurons innervating the nucleus accumbens. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience. Online. 722.11. 2006

    Google Scholar 

  • Bérubé-Carriere N, Riad M, Dal Bo G, Trudeau L-E, Descarries L Vesicular glutamate transporter 2 in dopamine axon terminals of the nucleus accumbens. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience. Online. 38.9. 2007

    Google Scholar 

  • Chuhma N, Zhang H, Masson J, Zhuang X, Sulzer D, Hen R, Rayport S (2004) Dopamine neurons mediate a fast excitatory signal via their glutamatergic synapses. J Neurosci 24:972–981

    Article  PubMed  CAS  Google Scholar 

  • Chung EK, Chen LW, Chan YS, Yung KK (2006–2007) Up-regulation in expression of vesicular glutamate transporter 3 in substantia nigra but not in striatum of 6-hydroxydopamine-lesioned rats. Neurosignals 15:238–248

    Google Scholar 

  • Congar P, Bergevin A, Trudeau LE (2002) D2 receptors inhibit the secretory process downstream from calcium influx in dopaminergic neurons: implication of k(+) channels. J Neurophysiol 87:1046–1056

    PubMed  CAS  Google Scholar 

  • Dal Bo G, Bérubé-Carrière N, Mendez JA, Leo D, Riad M, Descarries L, Lévesque D, Trudeau L-E Enhanced glutamatergic phenotype of mesencephalic dopamine neurons after neonatal 6-hydroxydopamine lesion. Neuroscience (in press).

    Google Scholar 

  • Dal Bo G, Lévesque D, Trudeau L-E A 6-OHDA lesion up-regulates VGLUT2 expression in dopaminergic neurons of the VTA. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience. Online. 155. 6. 2005

    Google Scholar 

  • Dal Bo G, St-Gelais F, Danik M, Williams S, Cotton M, Trudeau LE (2004) Dopamine neurons in culture express VGLUT2 explaining their capacity to release glutamate at synapses in addition to dopamine. J Neurochem 88:1398–1405

    Article  PubMed  CAS  Google Scholar 

  • Daniels RW, Collins CA, Chen K, Gelfand MV, Featherstone DE, DiAntonio A (2006) A single vesicular glutamate transporter is sufficient to fill a synaptic vesicle. Neuron 49:11–16

    Article  PubMed  CAS  Google Scholar 

  • Daniels RW, Collins CA, Gelfand MV, Dant J, Brooks ES, Krantz DE, DiAntonio A (2004) Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content. J Neurosci 24:10466–10474

    Article  PubMed  CAS  Google Scholar 

  • Descarries L, Beaudet A, Watkins KC (1975) Serotonin nerve terminals in adult rat neocortex. Brain Res 100:563–588

    Article  PubMed  CAS  Google Scholar 

  • Descarries L, Bérubé-Carrière N, Riad M, Bo GD, Mendez JA, Trudeau LE (2007) Glutamate in dopamine neurons: Synaptic versus diffuse transmission. Brain Res Rev.

    Google Scholar 

  • Descarries L, Bosler O, Berthelet F, Des Rosiers MH (1980) Dopaminergic nerve endings visualised by high-resolution autoradiography in adult rat neostriatum. Nature 284:620–622

    Article  PubMed  CAS  Google Scholar 

  • Descarries L, Mechawar N (2000) Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Prog Brain Res 125:27–47

    Article  PubMed  CAS  Google Scholar 

  • Descarries L, Watkins KC, Garcia S, Bosler O, Doucet G (1996) Dual character, asynaptic and synaptic, of the dopamine innervation in adult rat neostriatum: a quantitative autoradiographic and immunocytochemical analysis. J Comp Neurol 375:167–186

    Article  PubMed  CAS  Google Scholar 

  • Descarries L, Watkins KC, Lapierre Y (1977) Noradrenergic axon terminals in the cerebral cortex of rat. III. Topometric ultrastructural analysis. Brain Res 133:197–222

    Article  PubMed  CAS  Google Scholar 

  • Eastwood SL, Harrison PJ (2005) Decreased expression of vesicular glutamate transporter 1 and complexin II mRNAs in schizophrenia: further evidence for a synaptic pathology affecting glutamate neurons. Schizophr Res 73:159–172

    Article  PubMed  CAS  Google Scholar 

  • Fremeau RT Jr, Burman J, Qureshi T, Tran CH, Proctor J, Johnson J, Zhang H, Sulzer D, Copenhagen DR, Storm-Mathisen J, Reimer RJ, Chaudhry FA, Edwards RH (2002) The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc Natl Acad Sci U S A 99:14488–14493

    Article  PubMed  CAS  Google Scholar 

  • Fremeau RT Jr, Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ, Bellocchio EE, Fortin D, Storm-Mathisen J, Edwards RH (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260

    Article  PubMed  CAS  Google Scholar 

  • Fujiyama F, Furuta T, Kaneko T (2001) Immunocytochemical localization of candidates for vesicular glutamate transporters in the rat cerebral cortex. J Comp Neurol 435:379–387

    Article  PubMed  CAS  Google Scholar 

  • Fung SI, Chan JY, Manzoni D, White SR, Lai YY, Strahlendorf HK, Zhuo H, Liu RH, Reddy VK, Barnes CD (1994) Co-transmitter-mediated locus coeruleus action on motoneurons. Brain Res Bull 35:423–432

    Article  PubMed  CAS  Google Scholar 

  • Fung SJ, Barnes CD (1989) Raphe-produced excitation of spinal cord motoneurons in the cat. Neurosci Lett 103:185–190

    Article  PubMed  CAS  Google Scholar 

  • Fung SJ, Reddy VK, Liu RH, Wang Z, Barnes CD (1994) Existence of glutamate in noradrenergic locus coeruleus neurons of rodents. Brain Res Bull 35:505–512

    Article  PubMed  CAS  Google Scholar 

  • Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917–925

    Article  PubMed  CAS  Google Scholar 

  • Gras C, Herzog E, Bellenchi GC, Bernard V, Ravassard P, Pohl M, Gasnier B, Giros B, El Mestikawy S (2002) A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J Neurosci 22:5442–5451

    PubMed  CAS  Google Scholar 

  • Harkany T, Holmgren C, Hartig W, Qureshi T, Chaudhry FA, Storm-Mathisen J, Dobszay MB, Berghuis P, Schulte G, Sousa KM, Fremeau RT Jr, Edwards RH, Mackie K, Ernfors P, Zilberter Y (2004) Endocannabinoid-independent retrograde signaling at inhibitory synapses in layer 2/3 of neocortex: involvement of vesicular glutamate transporter 3. J Neurosci 24:4978–988

    Article  PubMed  CAS  Google Scholar 

  • Herzog E, Bellenchi GC, Gras C, Bernard V, Ravassard P, Bedet C, Gasnier B, Giros B, El Mestikawy S (2001) The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J Neurosci 21:RC181

    PubMed  CAS  Google Scholar 

  • Herzog E, Gilchrist J, Gras C, Muzerelle A, Ravassard P, Giros B, Gaspar P, El Mestikawy S (2004) Localization of VGLUT3, the vesicular glutamate transporter type 3, in the rat brain. Neuroscience 123:983–1002

    Article  PubMed  CAS  Google Scholar 

  • Hisano S, Hoshi K, Ikeda Y, Maruyama D, Kanemoto M, Ichijo H, Kojima I, Takeda J, Nogami H (2000) Regional expression of a gene encoding a neuron-specific Na(+)- dependent inorganic phosphate cotransporter (DNPI) in the rat forebrain. Brain Res Mol Brain Res 83:34–43

    Article  CAS  Google Scholar 

  • Holtman JR Jr, Dick TE, Berger AJ (1986) Involvement of serotonin in the excitation of phrenic motoneurons evoked by stimulation of the raphe obscurus. J Neurosci 6:1185–1193

    PubMed  Google Scholar 

  • Hrabovszky E, Kallo I, Turi GF, May K, Wittmann G, Fekete C, Liposits Z (2006) Expression of vesicular glutamate transporter-2 in gonadotrope and thyrotrope cells of the rat pituitary. Regulation by estrogen and thyroid hormone status. Endocrinology 147:3818–3825

    Article  PubMed  CAS  Google Scholar 

  • Hull CD, Bernardi G, Buchwald NA (1970) Intracellular responses of caudate neurons to brain stem stimulation. Brain Res 22:163–179

    Article  PubMed  CAS  Google Scholar 

  • Hull CD, Bernardi G, Price DD, Buchwald NA (1973) Intracellular responses of caudate neurons to temporally and spatially combined stimuli. Exp Neurol 38:324–336

    Article  PubMed  CAS  Google Scholar 

  • Hur EE, Zaborszky L (2005) Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: a combined retrograde tracing in situ hybridization. J Comp Neurol 483:351–373

    Article  PubMed  Google Scholar 

  • Johnson MD (1994a) Synaptic glutamate release by postnatal rat serotonergic neurons in microculture. Neuron 12:433–442

    Google Scholar 

  • Johnson MD (1994b) Electrophysiological and histochemical properties of postnatal rat serotonergic neurons in dissociated cell culture. Neuroscience 63:775–787

    Google Scholar 

  • Johnson MD, Yee AG (1995) Ultrastructure of electrophysiologically characterized synapses formed by serotonergic raphe neurons in culture. Neuroscience 67:609–623

    Article  PubMed  CAS  Google Scholar 

  • Jomphe C, Bourque MJ, Fortin GD, St-Gelais F, Okano H, Kobayashi K, Trudeau LE (2005) Use of TH-EGFP transgenic mice as a source of identified dopaminergic neurons for physiological studies in postnatal cell culture. J Neurosci Methods 146:1–12

    Article  PubMed  CAS  Google Scholar 

  • Joyce MP, Rayport S (2000) Mesoaccumbens dopamine neuron synapses reconstructed in vitro are glutamatergic. Neuroscience 99:445–456

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Akiyama H, Nagatsu I, Mizuno N (1990) Immunohistochemical demonstration of glutaminase in catecholaminergic and serotoninergic neurons of rat brain. Brain Res 507:151–154

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Fujiyama F (2002) Complementary distribution of vesicular glutamate transporters in the central nervous system. Neurosci Res 42:243–250

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Fujiyama F, Hioki H (2002) Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain. J Comp Neurol 444:39–62

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Mizuno N (1994) Glutamate-synthesizing enzymes in GABAergic neurons of the neocortex: a double immunofluorescence study in the rat. Neuroscience 61:839–1849

    Article  PubMed  CAS  Google Scholar 

  • Kang TC, Kim DS, Kwak SE, Kim JE, Kim DW, Kang JH, Won MH, Kwon OS, Choi SY (2005) Valproic acid reduces enhanced vesicular glutamate transporter immunoreactivities in the dentate gyrus of the seizure prone gerbil. Neuropharmacology 49:912–921

    Article  PubMed  CAS  Google Scholar 

  • Kashani A, Betancur C, Giros B, Hirsch E, El Mestikawy S (2007a) Altered expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in Parkinson disease. Neurobiol Aging 28:568–578

    Google Scholar 

  • Kashani A, Lepicard E, Poirel O, Videau C, David JP, Fallet-Bianco C, Simon A, Delacourte A, Giros B, Epelbaum J, Betancur C, El Mestikawy S (2007b) Loss of VGLUT1 and VGLUT2 in the prefrontal cortex is correlated with cognitive decline in Alzheimer disease. Neurobiol Aging

    Google Scholar 

  • Kawano M, Kawasaki A, Sakata-Haga H, Fukui Y, Kawano H, Nogami H, Hisano S (2006) Particular subpopulations of midbrain and hypothalamic dopamine neurons express vesicular glutamate transporter 2 in the rat brain. J Comp Neurol 498:581–592

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki A, Hoshi K, Kawano M, Nogami H, Yoshikawa H, Hisano S (2005) Up-regulation of VGLUT2 expression in hypothalamic-neurohypophysial neurons of the rat following osmotic challenge. Eur J Neurosci 22:672–680

    Article  PubMed  Google Scholar 

  • Kawasaki A, Shutoh F, Nogami H, Hisano S (2006) VGLUT2 expression is up-regulated in neurohypophysial vasopressin neurons of the rat after osmotic stimulation. Neurosci Res.

    Google Scholar 

  • Kim DS, Kwak SE, Kim JE, Won MH, Choi HC, Song HK, Kwon OS, Kim YI, Choi SY, Kang TC (2005) Bilateral enhancement of excitation via up-regulation of vesicular glutamate transporter subtype 1, not subtype 2, immunoreactivity in the unilateral hypoxic epilepsy model. Brain Res 1055:122–130

    Article  PubMed  CAS  Google Scholar 

  • Kim JE, Kim DS, Kwak SE, Choi HC, Song HK, Choi SY, Kwon OS, Kim YI, Kang TC (2007) Anti-glutamatergic effect of riluzole: comparison with valproic acid. Neuroscience 147:136–145

    Article  PubMed  CAS  Google Scholar 

  • Kirvell SL, Esiri M, Francis PT (2006) Down-regulation of vesicular glutamate transporters precedes cell loss and pathology in Alzheimer's disease. J Neurochem 98:939–950

    Article  PubMed  CAS  Google Scholar 

  • Kitai ST, Wagner A, Precht W, Ono T (1975) Nigro-caudate and caudato-nigral relationship: an electrophysiological study. Brain Res 85:44–48

    Article  PubMed  CAS  Google Scholar 

  • Lapish CC, Seamans JK, Judson Chandler L (2006) Glutamate-dopamine cotransmission and reward processing in addiction. Alcohol Clin Exp Res 30:1451–1465

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Choi S, Tsien RW (1999) Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron 22:395–409

    Article  PubMed  CAS  Google Scholar 

  • Liu RH, Fung SJ, Reddy VK, Barnes CD (1995) Localization of glutamatergic neurons in the dorsolateral pontine tegmentum projecting to the spinal cord of the cat with a proposed role of glutamate on lumbar motoneuron activity. Neuroscience 64:193–208

    Article  PubMed  CAS  Google Scholar 

  • Margolis EB, Lock H, Hjelmstad GO, Fields HL (2006) The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? J Physiol 577:907–924

    Article  PubMed  CAS  Google Scholar 

  • Mashima H, Yamada S, Tajima T, Seno M, Yamada H, Takeda J, Kojima I (1999) Genes expressed during the differentiation of pancreatic AR42J cells into insulin-secreting cells. Diabetes 48:304–309

    Article  PubMed  CAS  Google Scholar 

  • Mendez JA, Bourque M-J, Bourdeau ML, Danik M, Williams S, Lacaille J-C, Trudeau L-E (2008) Contact-dependent regulation of the neurotransmitter phenotype of dopamine neurons. J Neurosci 28:6309–6318.

    Google Scholar 

  • Mendez JA, Bourque M-J, Trudeau L-E (2005) Evidence for the expression of VGLUT2 mRNA in acutely dissociated TH-GFP mouse dopamine neurons. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience. Online. 155. 3. 2005.

    Google Scholar 

  • Montana V, Ni Y, Sunjara V, Hua X, Parpura V (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24:2633–642

    Article  PubMed  CAS  Google Scholar 

  • Morimoto R, Hayashi M, Yatsushiro S, Otsuka M, Yamamoto A, Moriyama Y (2003) Co-expression of vesicular glutamate transporters (VGLUT1 and VGLUT2) and their association with synaptic-like microvesicles in rat pinealocytes. J Neurochem 84:382–391

    Article  PubMed  CAS  Google Scholar 

  • Moutsimilli L, Farley S, Dumas S, El Mestikawy S, Giros B, Tzavara ET (2005) Selective cortical VGLUT1 increase as a marker for antidepressant activity. Neuropharmacology 49:890–900

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Wu SX, Fujiyama F, Okamoto K, Hioki H, Kaneko T (2004) Independent inputs by VGLUT2- and VGLUT3-positive glutamatergic terminals onto rat sympathetic preganglionic neurons. Neuroreport 15:431–436

    Article  PubMed  CAS  Google Scholar 

  • Ni B, Rosteck PR Jr, Nadi NS, Paul SM (1994) Cloning and expression of a cDNA encoding a brain-specific Na(+)- dependent inorganic phosphate cotransporter. Proc Natl Acad Sci U S A 91:5607–5611

    Article  PubMed  CAS  Google Scholar 

  • Nicholas AP, Pieribone VA, Arvidsson U, Hokfelt T (1992) Serotonin-, substance P- and glutamate/aspartate-like immunoreactivities in medullo-spinal pathways of rat and primate. Neuroscience 48:545–459

    Article  PubMed  CAS  Google Scholar 

  • Ottersen OP, Storm-Mathisen J (1984) Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J Comp Neurol 229:374–392

    Article  PubMed  CAS  Google Scholar 

  • Park MR, Gonzales-Vegas JA, Kitai ST (1982) Serotonergic excitation from dorsal raphe stimulation recorded intracellularly from rat caudate-putamen. Brain Res 243:49–58

    Article  PubMed  CAS  Google Scholar 

  • Pickel VM, Beckley SC, Joh TH, Reis DJ (1981) Ultrastructural immunocytochemical localization of tyrosine hydroxylase in the neostriatum. Brain Res 225:373–385

    Article  PubMed  CAS  Google Scholar 

  • Plenz D, Kitai ST (1996) Organotypic cortex-striatum-mesencephalon cultures: the nigrostriatal pathway. Neurosci Lett 209:177–180

    Article  PubMed  CAS  Google Scholar 

  • Robelet S, Melon C, Guillet B, Salin P, Kerkerian-Le Goff L (2004) Chronic L-DOPA treatment increases extracellular glutamate levels and GLT1 expression in the basal ganglia in a rat model of Parkinson's disease. Eur J Neurosci 20:1255–1266

    Article  PubMed  CAS  Google Scholar 

  • Rosin DL, Chang DA, Guyenet PG (2006) Afferent and efferent connections of the rat retrotrapezoid nucleus. J Comp Neurol 499:64–89

    Article  PubMed  Google Scholar 

  • Sawamoto K, Nakao N, Kobayashi K, Matsushita N, Takahashi H, Kakishita K, Yamamoto A, Yoshizaki T, Terashima T, Murakami F, Itakura T, Okano H (2001) Visualization, direct isolation, and transplantation of midbrain dopaminergic neurons. Proc Natl Acad Sci U S A 98:6423–6428

    Article  PubMed  CAS  Google Scholar 

  • Schafer MK, Varoqui H, Defamie N, Weihe E, Erickson JD (2002) Molecular cloning and functional identification of mouse vesicular glutamate transporter 3 and its expression in subsets of novel excitatory neurons. J Biol Chem 277:50734–48

    Article  PubMed  Google Scholar 

  • Smith RE, Haroutunian V, Davis KL, Meador-Woodruff JH (2001) Vesicular glutamate transporter transcript expression in the thalamus in schizophrenia. Neuroreport 12:2885–2887

    Article  PubMed  CAS  Google Scholar 

  • Somogyi J, Baude A, Omori Y, Shimizu H, El Mestikawy S, Fukaya M, Shigemoto R, Watanabe M, Somogyi P (2004) GABAergic basket cells expressing cholecystokinin contain vesicular glutamate transporter type 3 (VGLUT3) in their synaptic terminals in hippocampus and isocortex of the rat. Eur J Neurosci 19:552–569

    Article  PubMed  Google Scholar 

  • Storm-Mathisen J, Leknes AK, Bore AT, Vaaland JL, Edminson P, Haug FM, Ottersen OP (1983) First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301:517–520

    Article  PubMed  CAS  Google Scholar 

  • Stornetta RL, Sevigny CP, Guyenet PG (2002a) Vesicular glutamate transporter DNPI/VGLUT2 mRNA is present in C1 and several other groups of brainstem catecholaminergic neurons. J Comp Neurol 444:191–206

    Google Scholar 

  • Stornetta RL, Sevigny CP, Schreihofer AM, Rosin DL, Guyenet PG (2002b) Vesicular glutamate transporter DNPI/VGLUT2 is expressed by both C1 adrenergic and nonaminergic presympathetic vasomotor neurons of the rat medulla. J Comp Neurol 444:207–220

    Google Scholar 

  • Sulzer D, Joyce MP, Lin L, Geldwert D, Haber SN, Hattori T, Rayport S (1998) Dopamine neurons make glutamatergic synapses in vitro. J Neurosci 18:4588–4602

    PubMed  CAS  Google Scholar 

  • Takamori S, Rhee JS, Rosenmund C, Jahn R (2000) Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407:189–194

    Article  PubMed  CAS  Google Scholar 

  • Talbot K, Eidem WL, Tinsley CL, Benson MA, Thompson EW, Smith RJ, Hahn CG, Siegel SJ, Trojanowski JQ, Gur RE, Blake DJ, Arnold SE (2004) Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 113:1353–1363

    PubMed  CAS  Google Scholar 

  • Tordera RM, Pei Q, Sharp T (2005) Evidence for increased expression of the vesicular glutamate transporter, VGLUT1, by a course of antidepressant treatment. J Neurochem 94:875–883

    Article  PubMed  CAS  Google Scholar 

  • Trudeau LE (2004) Glutamate co-transmission as an emerging concept in monoamine neuron function. J Psychiatry Neurosci 29:296–310

    PubMed  Google Scholar 

  • Varoqui H, Schafer MK, Zhu H, Weihe E, Erickson JD (2002) Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 22:142–155

    PubMed  CAS  Google Scholar 

  • Voorn P, Jorritsma-Byham B, Van Dijk C, Buijs RM (1986) The dopaminergic innervation of the ventral striatum in the rat: a light- and electron-microscopical study with antibodies against dopamine. J Comp Neurol 251:84–99

    Article  PubMed  CAS  Google Scholar 

  • Wilson CJ, Chang HT, Kitai ST (1982) Origins of postsynaptic potentials evoked in identified rat neostriatal neurons by stimulation in substantia nigra. Exp Brain Res 45:157–167

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Sheen W, Morales M (2007) Glutamatergic neurons are present in the rat ventral tegmental area. Eur J Neurosci 25:106–118

    Article  PubMed  Google Scholar 

  • Yamashita T, Ishikawa T, Takahashi T (2003) Developmental increase in vesicular glutamate content does not cause saturation of AMPA receptors at the calyx of held synapse. J Neurosci 23:3633–638

    PubMed  CAS  Google Scholar 

  • Zhang Q, Pangrsic T, Kreft M, Krzan M, Li N, Sul JY, Halassa M, Van Bockstaele E, Zorec R, Haydon PG (2004) Fusion-related release of glutamate from astrocytes. J Biol Chem 279:12724–12733

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

L-E Trudeau is a senior scholar of the Fonds de la Recherche en Santé du Québec and receives support from the Canadian Institutes of Health Research. Support from the National Alliance for Research on Schizophrenia and Depression is also acknowledged for some of the work discussed in the chapter. José Alfredo Mendez is supported by the Jasper postdoctoral fellowship of the Groupe de Recherche sur le système nerveux central.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Trudeau, L.E., Bo, G.D., Mendez, J.A. (2009). Glutamate Co-Release by Monoamine Neurons. In: Gutierrez, R. (eds) Co-Existence and Co-Release of Classical Neurotransmitters. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09622-3_8

Download citation

Publish with us

Policies and ethics