Skip to main content

GABA is the Main Neurotransmitter Released from Mossy Fiber Terminals in the Developing Rat Hippocampus

  • Chapter
  • First Online:
Co-Existence and Co-Release of Classical Neurotransmitters

Abstract

Early in postnatal development, correlated activity in the hippocampus is characterized by giant depolarizing potentials (GDPs). GDPs are generated by the interplay between glutamate and GABA, which in the immediate postnatal period is depolarizing and excitatory. Here, we review some recent data obtained in our laboratory concerning neuronal signaling at immature MF connections. MF responses were identified on the basis of their strong paired-pulse facilitation, short-term frequency-dependent facilitation and sensitivity to group III mGluR agonist L-AP4. Unlike adulthood, during the first week of postnatal life minimal stimulation of MF evoked responses that were potentiated by flurazepam and abolished by picrotoxin indicating that they were GABAergic. In addition, using a pairing procedure we found that GDPs and associated calcium transients act as coincident detectors for enhancing synaptic efficacy at poorly developed MF-CA3 and MF-interneurons connections. This may be crucial for synaptogenesis and for establishing the adult neuronal circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

CNS:

Central Nervous System

CNQX:

6-cyano-7-nitroquinoxaline-2,3-dione

D-APV:

D-(-)-2-Amino-5-phosphonopentanoic acid

DCG-IV:

(2S,2'R,3'R)-2-(2',3'-Dicarboxycyclopropyl)glycine

DNQX:

6,7-Dinitroquinoxaline-2,3-dione

GAT-1:

a high-affinity GABA plasma membrane transporter

GABA:

γ-Amino-butyric acid

GAD:

glutamic acid decarboxylase

GDPs:

Giant Depolarizing Potentials

IPSC:

inhibitory postsynaptic current

KCC2:

neuronal Potassium-Chloride cotransporter

L-AP4:

2-amino-4-phosphonobutyric acid

MF:

Mossy fibers

mGluR:

metabotropic glutamate receptors

NKCC1:

Sodium, Potassium Chloride cotransporter

NMDA:

N-methyl-D-aspartate

P:

postnatal day

VGAT:

Vesicular GABA Transporter

References

  • Acsady L, Kamondi A, Sik A, Freund T, Buzsaki G (1998) GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 18:3386–3403

    PubMed  CAS  Google Scholar 

  • Allen C, Stevens CF (1994) An evaluation of causes for unreliability of synaptic transmission. Proc Natl Acad Sci U S A 91:10380–10383

    Article  PubMed  CAS  Google Scholar 

  • Amaral DG, Dent JA (1981) Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions. J Comp Neurol 195:51–86

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of the nurture. Nature Rev Neurosci 3:728–739

    Article  CAS  Google Scholar 

  • Ben-Ari Y, Cherubini E, Corradetti R, Gaiarsa JL (1989) Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol (Lond) 416:303–325

    CAS  Google Scholar 

  • Ben-Ari Y, Khazipov R, Leinekugel X, Caillard O, Gaiarsa JL (1997) GABAA, NMDA and AMPA receptors: a developmentally regulated “menage a trois”. Trends Neurosci 20:523–529

    Article  PubMed  CAS  Google Scholar 

  • Bergersen L, Ruiz A, Bjaalie JG, Kullmann DM, Gundersen V (2003) GABA and GABAA receptors at hippocampal mossy fibre synapses. Eur J Neurosci 18:931–941

    Article  PubMed  Google Scholar 

  • Blatow M, Caputi A, Burnashev N, Monyer H, Rozov A (2003) Ca2+ buffer saturation underlies paired pulse facilitation in calbindin-D28k-containing terminals. Neuron 38:79–88

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki G, Draguhn A. (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry FA, Reimer RJ, Bellocchio EE, Danbolt NC, Osen KK, Edwards RH, Storm-Mathisen J (1998) The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J Neurosci 8:9733–9750

    Google Scholar 

  • Chen G, Trombley PQ, van den Pol AN (1996) Excitatory actions of GABA in developing rat hypothalamic neurones. J Physiol 494:451–464

    PubMed  CAS  Google Scholar 

  • Cherubini E, Gaiarsa JL, Ben-Ari Y (1991) GABA: an excitatory transmitter in early postnatal life. Trends Neurosci 14:515–519

    Article  PubMed  CAS  Google Scholar 

  • Cherubini E and Conti F (2001) Generating diversity at GABAergic synapses. Trends Neurosci 24:155–162

    Article  PubMed  CAS  Google Scholar 

  • Dammerman RS, Flint AC, Noctor S, Kriegstein AR (2000) An excitatory GABAergic plexus in developing neocortical layer 1. J Neurophysiol 84:428–434

    PubMed  CAS  Google Scholar 

  • Demarque M, Represa A, Becq H, Khalilov I, Ben-Ari Y and Aniksztejn L (2002) Paracrine intercellular communication by a Ca2+ – and SNARE-independent release of GABA and glutamate prior to synapse formation. Neuron 36:1051–1061

    Article  PubMed  CAS  Google Scholar 

  • Doherty JJ, Alagarsamy S, Bough KJ, Conn PJ, Dingledine R, Mott DD (2004) Metabotropic glutamate receptors modulate feedback inhibition in a developmentally regulated manner in rat dentate gyrus. J Physiol 561:395–401

    Article  PubMed  CAS  Google Scholar 

  • Dupuy ST, Houser CR (1997) Developmental changes in GABA neurons of the rat dentate gyrus: an in situ hybridization and birthdating study. J Comp Neurol 389:402–418

    Article  PubMed  CAS  Google Scholar 

  • Eilers J, Plant TD, Marandi N, Konnerth A (2001) GABA-mediated Ca2+ signalling in developing rat cerebellar Purkinje neurones. J Physiol 536:429–437

    Article  PubMed  CAS  Google Scholar 

  • Feller MB, Butts DA, Aaron HL, Rokhsar DS, Shatz CJ (1997) Dynamic processes shape spatiotemporal properties of retinal waves. Neuron 19:293–306

    Article  PubMed  CAS  Google Scholar 

  • Frotscher M, Jonas P, Sloviter RS (2006) Synapses formed by normal and abnormal hippocampal mossy fibers. Cell Tissue Res 326:361–367

    Article  PubMed  Google Scholar 

  • Garaschuk O, Hanse E, Konnerth A (1998) Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. J Physiol (London) 507:219–236

    Article  CAS  Google Scholar 

  • Gasparini S, Saviane C, Voronin LL, Cherubini E (2000) Silent synapses in the developing hippocampus: lack of functional AMPA receptors or low probability of glutamate release? Proc Natl Acad Sci U S A 97:9741–9746

    Article  PubMed  CAS  Google Scholar 

  • Gillespie DC, Kim G, Kandler K (2005) Inhibitory synapses in the developing auditory system are glutamatergic. Nat Neurosci 8:332–338

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez R (2005) The dual glutamatergic-GABAergic phenotype of hippocampal granule cells. Trends Neurosci 28:297–303

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez R, Heinemann U (2001) Kindling induces transient fast inhibition in the dentate gyrus--CA3 projection. Eur J Neurosci 13:1371–1379

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez R, Romo-Parra H, Maqueda J, Vivar C, Ramirez M, Morales MA, Lamas M (2003) Plasticity of the GABAergic phenotype of the “glutamatergic” granule cells of the rat dentate gyrus. J Neurosci 23:5594–5598

    PubMed  CAS  Google Scholar 

  • Henze DA, Urban NN, Barrionuevo G (2000) The multifarious hippocampal mossy fiber pathway: a review. Neuroscience 98:407–427

    Article  PubMed  CAS  Google Scholar 

  • Hirata K, Sawada S, Yamamoto C (1992) Quantal analysis of suppressing action of baclofen on mossy fiber synapses in guinea pig hippocampus. Brain Res 578:33–40

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa Y, Sciancalepore M, Stratta F, Martina M and Cherubini E (1994) Developmental changes in spontaneous GABAA-mediated synaptic events in rat hippocampal CA3 neurones. Eur J Neurosci 6:805–813

    Article  PubMed  CAS  Google Scholar 

  • Jonas P, Major G, Sakmann B (1993) Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J Physiol 472:615–663

    PubMed  CAS  Google Scholar 

  • Jonas P, Bischofberger J, Sandkuhler J (1998) Corelease of two fast neurotransmitters at a central synapse. Science 281:419–424

    Article  PubMed  CAS  Google Scholar 

  • Kamiya H, Shinozaki H, Yamamoto C (1996) Activation of metabotropic glutamate receptor type 2/3 suppresses transmission at rat hippocampal mossy fibre synapses. J Physiol 493:447–455

    PubMed  CAS  Google Scholar 

  • Kasyanov AM, Safiulina VF, Voronin LL, Cherubini E (2004) GABA-mediated giant depolarizing potentials as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus. Proc Natl Acad Sci USA 101:3967–3972

    Article  PubMed  CAS  Google Scholar 

  • Lamas M, Gomez-Lira G, Gutierrez R (2001) Vesicular GABA transporter mRNA expression in the dentate gyrus and in mossy fiber synaptosomes. Brain Res Mol Brain Res 93:209–214

    Article  PubMed  CAS  Google Scholar 

  • Lanthorn TH, Ganong AH, Cotman CW (1984) 2-Amino-4-phosphonobutyrate selectively blocks mossy fiber-CA3 responses in guinea pig but not rat hippocampus. Brain Res 290:174–178

    Article  PubMed  CAS  Google Scholar 

  • Leinekugel X, Medina I, Khalilov I, Ben-Ari Y, Khazipov R (1997) Ca2+ oscillations mediated by the synergistic excitatory actions of GABA(A) and NMDA receptors in the neonatal hippocampus. Neuron 18:243–255

    Article  PubMed  CAS  Google Scholar 

  • Leinekugel X, Khazipov R, Cannon R, Hirase H, Ben-Ari Y and Buzsaki G (2002) Correlated bursts of activity in the neonatal hippocampus in vivo. Science 296:2049–2052

    Article  PubMed  CAS  Google Scholar 

  • Maric D, Liu QY, Maric I, Chaudry S, Chang YH, Smith SV, Sieghart W, Fritschy JM, Barker JL (2001) GABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABA(A) autoreceptor/Cl- channels. J Neurosci 21:2343–2360

    PubMed  CAS  Google Scholar 

  • Menendez de la Prida L, Sanchez-Andres JV (1999) Nonlinear frequency-dependent synchronization in the developing hippocampus. J Neurophysiol 82:202–208

    Google Scholar 

  • Menendez de la Prida L, Sanchez-Andres JV (2000) Heterogeneous populations of cells mediate spontaneous synchronous bursting in the developing hippocampus through a frequency-dependent mechanism. Neuroscience 97:227–241

    Article  Google Scholar 

  • Menendez de la Prida LM, Huberfeld G, Cohen I, Miles R (2006) Threshold behavior in the initiation of hippocampal population bursts. Neuron 49:131–142

    Article  Google Scholar 

  • Miles R, Wong RKS (1987) Latent synaptic pathways revealed after tetanic stimulation in the hippocampus. Nature 329:724–726

    Article  PubMed  CAS  Google Scholar 

  • Mohajerani MH and Cherubini E (2005) Spontaneous recurrent network activity in organotypic rat hippocampal slices. Eur J Neurosci 22:107–118

    Article  PubMed  Google Scholar 

  • Mohajerani MH, Sivakumaran S, Zacchi P, Aguilera P, Cherubini E (2007) Correlated network activity enhances synaptic efficacy via BDNF and the ERK pathway at immature CA3–CA1 connections in the hippocampus. Proc Natl Acad Sci U S A 104:13176–13181

    Article  PubMed  CAS  Google Scholar 

  • Moore KA, Nicoll RA, Schmitz D (2003) Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses. Proc Natl Acad Sci U S A 100:14397–14402

    Article  PubMed  CAS  Google Scholar 

  • Nicoll RA, Schmitz D (2005) Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 6:863–876

    Article  PubMed  CAS  Google Scholar 

  • O’Donovan MJ (1999) The origin of spontaneous activity in developing networks of the vertebrate nervous system. Curr Opin Neurobiol 9:94–104

    Article  PubMed  Google Scholar 

  • O’Malley DM, Masland RH (1989) Co-release of acetylcholine and gamma-aminobutyric acid by a retinal neuron. Proc Natl Acad Sci U S A 86:3414–3418

    Article  PubMed  Google Scholar 

  • Owens DF, Boyce LH, Davis MBE, Kriegstein AR (1996) Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J Neurosci 16:6414–6423

    PubMed  CAS  Google Scholar 

  • Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nature Rev Neurosci 3:715–727

    Article  CAS  Google Scholar 

  • Payne JA, Rivera C, Voipio J, Kaila K (2003) Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci 26:199–206

    Article  PubMed  CAS  Google Scholar 

  • Ramon y Cajal SR (1911) Histologie du Système Nerveux de l’Homme et des Vertébrés,vol. II. Maloine, Paris

    Google Scholar 

  • Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, et al (1999) The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255

    Article  PubMed  CAS  Google Scholar 

  • Roberts E (1986) Failure of GABAergic inhibition: a key to local and global seizures. Adv Neurol 44:319–341

    PubMed  CAS  Google Scholar 

  • Romo-Parra H, Vivar C, Maqueda J, Morales MA, Gutierrez R (2003) Activity-dependent induction of multitransmitter signaling onto pyramidal cells and interneurons of hippocampal area CA3. J Neurophysiol 89:3155–3167

    Article  PubMed  CAS  Google Scholar 

  • Salin PA, Scanziani M, Malenka RC, Nicoll RA (1996) Distinct short-term plasticity at two excitatory synapses in the hippocampus Proc Natl Acad Sci U S A 93:13304–13309

    Article  PubMed  CAS  Google Scholar 

  • Safiulina VF, Fattorini G, Conti F, Cherubini E (2006) GABAergic signaling at mossy fiber synapses in neonatal rat hippocampus. J Neurosci 26:597–608

    Article  PubMed  CAS  Google Scholar 

  • Schmitz D, Mellor J, Nicoll RA (2001) Presynaptic kainate receptor mediation of frequency facilitation at hippocampal mossy fiber synapses. Science. 2001 Mar 9; 291(5510):1972–1976

    Article  PubMed  CAS  Google Scholar 

  • Schwarzer C, Sperk G (1995) Hippocampal granule cells express glutamic acid decarboxylase-67 after limbic seizures in the rat. Neuroscience 69:705–709

    Article  PubMed  CAS  Google Scholar 

  • Semyanov A, Kullmann DM (2000) Modulation of GABAergic signaling among interneurons by metabotropic glutamate receptors. Neuron 25:663–672

    Article  PubMed  CAS  Google Scholar 

  • Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S, Mizuno N (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 17:7503–7522

    PubMed  CAS  Google Scholar 

  • Sloviter RS, Dichter MA, Rachinsky TL, Dean E, Goodman JH, Sollas AL, Martin DL (1996) Basal expression and induction of glutamate decarboxylase and GABA in excitatory granule cells of the rat and monkey hippocampal dentate gyrus. J Comp Neurol 373:593–618

    Article  PubMed  CAS  Google Scholar 

  • Stirling RV, Bliss TV (1978) Hippocampal mossy fiber development at the ultrastructural level. Prog Brain Res 48:191–198

    Article  PubMed  CAS  Google Scholar 

  • Toth K, Suares G, Lawrence JJ, Philips-Tansey E, McBain CJ (2000) Differential mechanisms of transmission at three types of mossy fiber synapse. J Neurosci 20:8279–8289

    PubMed  CAS  Google Scholar 

  • Traub RD, Wong RK (1982) Cellular mechanism of neuronal synchronization in epilepsy. Science 216:745–747

    Article  PubMed  CAS  Google Scholar 

  • Traub RD, Miles R (1991) Multiple modes of neuronal population activity emerge after modifying specific synapses in a model of the CA3 region of the hippocampus. Ann N Y Acad Sci 627:277–290

    Article  PubMed  CAS  Google Scholar 

  • Tyzio R, Represa A, Jorquera I, Ben-Ari Y, Gozlan H and Aniksztejn L (1999) The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite. J Neurosci 19:10372–10382

    PubMed  CAS  Google Scholar 

  • Uchigashima M, Fukaya M, Watanabe M, Kamiya H (2007) Evidence against GABA release from glutamatergic mossy fiber terminals in the developing hippocampus. J Neurosci 27:8088–8100

    Article  PubMed  CAS  Google Scholar 

  • Walker MC, Ruiz A, Kullmann DM (2001) Monosynaptic GABAergic signaling from dentate to CA3 with a pharmacological and physiological profile typical of mossy fiber synapses. Neuron 29:703–715

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Reichling DB, Kyrozis A, MacDermott AB (1994) Developmental loss of GABA- and glycine-induced depolarization and Ca2+ transients in embryonic rat dorsal horn neurons in culture. Eur J Neurosci 6:1275–1280

    Article  PubMed  CAS  Google Scholar 

  • Weisskopf MG, Zalutsky RA, Nicoll RA (1993) The opioid peptide dynorphin mediates heterosynaptic depression of hippocampal mossy fibre synapses and modulates long-term potentiation. Nature 362:423–427

    Article  PubMed  CAS  Google Scholar 

  • Westbrook GL, Mayer ML (1987) Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature 328:640–643

    Article  PubMed  CAS  Google Scholar 

  • Yuste R, Katz LC (1991) Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron 6:333–344

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Drs. A. Kasyanov, G. Fattorini and F. Conti for participating in some experiments. The original research work was supported by grants from Ministero Istruzione, Universita’, Ricerca (MIUR, Italy) and the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Cherubini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Safiulina, V.F., Mohajerani, M.H., Sivakumaran, S., Cherubini, E. (2009). GABA is the Main Neurotransmitter Released from Mossy Fiber Terminals in the Developing Rat Hippocampus. In: Gutierrez, R. (eds) Co-Existence and Co-Release of Classical Neurotransmitters. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09622-3_6

Download citation

Publish with us

Policies and ethics