Skip to main content

Co-Release of Norepinephrine and Acetylcholine by Mammalian Sympathetic Neurons: Regulation by Target-Derived Signaling

  • Chapter
  • First Online:
Co-Existence and Co-Release of Classical Neurotransmitters

Abstract

Neurotransmitter expression has long been thought of as a defining phenotypic property of adult neurons. However, it has now been shown that most neurons co-release multiple signaling molecules. Many examples of neurons that co-release a classical transmitter (e.g., acetylcholine, norepinephrine or glutamate) and neuromodulators have been demonstrated, but neurons can also co-release more than one classical transmitter. Defining the mechanisms that determine released transmitter(s) is important for understanding neural function since this largely determines the influence of neural activity. This chapter details evidence showing that mammalian sympathetic neurons co-release acetylcholine (ACh) and norepinephrine (NE). Sympathetic neurons project to body tissues including blood vessels and heart to control functions such as regulation of blood pressure and cardiac output. Transmitter choice in sympathetic neurons is controlled by target-derived, soluble growth factors. Current data suggests that these factors may operate to regulate the relative amounts of ACh and NE released by sympathetic neurons, which may play an important role in homeostatic regulation of essential physiological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson RL, Jobling P and Gibbins IL (2001) Development of electrophysiological and morphological diversity in autonomic neurons. J Neurophysiol 86(3):1237--1251

    PubMed  CAS  Google Scholar 

  • Asmus SE, Parsons S and Landis SC (2000) Developmental changes in the transmitter properties of sympathetic neurons that innervate the periosteum. J Neurosci 20(4):1495--1504

    PubMed  CAS  Google Scholar 

  • Bamji SX, Majdan M, Pozniak CD, Belliveau DJ, Aloyz R, Kohn J, Causing CG and Miller FD (1998) The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J Cell Biol 140(4):911--923

    Article  PubMed  CAS  Google Scholar 

  • Bazan JF (1991) Neuropoietic cytokines in the hematopoietic fold. Neuron 7(2):197--208

    Article  PubMed  CAS  Google Scholar 

  • Bibel M and Barde YA (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14(23):2919--2937

    Article  PubMed  CAS  Google Scholar 

  • Bierl MA, Jones EE, Crutcher KA and Isaacson LG (2005) “Mature” nerve growth factor is a minor species in most peripheral tissues. Neurosci Lett 380(1-2):133--137

    Article  PubMed  CAS  Google Scholar 

  • Bierl MA and Isaacson LG (2007) Increased NGF proforms in aged sympathetic neurons and their targets. Neurobiol Aging 28(1):122--134

    Article  PubMed  CAS  Google Scholar 

  • Bradley E, Law A, Bell D and Johnson CD (2003) Effects of varying impulse number on cotransmitter contributions to sympathetic vasoconstriction in rat tail artery. Am J Physiol Heart Circ Physiol 284(6):H2007--14

    PubMed  CAS  Google Scholar 

  • Brodski C, Schnurch H and Dechant G (2000) Neurotrophin-3 promotes the cholinergic differentiation of sympathetic neurons. Proc Natl Acad Sci U S A 97(17):9683--9688

    Article  PubMed  CAS  Google Scholar 

  • Brodski C, Schaubmar A and Dechant G (2002) Opposing functions of GDNF and NGF in the development of cholinergic and noradrenergic sympathetic neurons. Mol Cell Neurosci 19(4):528--538

    Article  PubMed  CAS  Google Scholar 

  • Bunge RP, Rees R, Wood P, Burton H and Ko C (1974) Anatomical and physiological observations on synapses formed on isolated autonomic neurons in tissue culture. Brain Research 66:401--412

    Article  Google Scholar 

  • Cai D, Holm JM, Duignan IJ, Zheng J, Xaymardan M, Chin A, Ballard VL, Bella JN and Edelberg JM (2006) BDNF-mediated enhancement of inflammation and injury in the aging heart. Physiol Genomics 24(3):191--197

    PubMed  CAS  Google Scholar 

  • Cassell JF, Clark AL and McLachlan EM (1986) Characteristics of phasic and tonic sympathetic ganglion cells of the guinea-pig. J Physiol 372:457--483

    PubMed  CAS  Google Scholar 

  • Chao MV and Hempstead BL (1995) p75 and Trk: a two-receptor system. Trends Neurosci 18(7):321--326

    Article  PubMed  CAS  Google Scholar 

  • Chun LL and Patterson PH (1977) Role of nerve growth factor in the development of rat sympathetic neurons in vitro. I. Survival, growth, and differentiation of catecholamine production. J Cell Biol 75(3):694--704

    Article  PubMed  CAS  Google Scholar 

  • Conforti L, Tohse N and Sperelakis N (1991) Influence of sympathetic innervation on the membrane electrical properties of neonatal rat cardiomyocytes in culture. J Dev Physiol 15(4):237--246

    PubMed  CAS  Google Scholar 

  • Dale H (1935) Pharmacology and nerve-endings. Proc. R. Soc. Med. 28:319--332

    CAS  Google Scholar 

  • Dixon JE and McKinnon D (1994) Expression of the trk gene family of neurotrophin receptors in prevertebral sympathetic ganglia. Brain Res Dev Brain Res 77(2):177--182

    Article  PubMed  CAS  Google Scholar 

  • Eccles J (1976) From electrical to chemical transmission in the central nervous system. Notes Rec R Soc Lond 30(2):219--230

    Article  PubMed  CAS  Google Scholar 

  • Elfvin LG, Lindh B and Hokfelt T (1993) The chemical neuroanatomy of sympathetic ganglia. Annu Rev Neurosci 16:471--507

    Article  PubMed  CAS  Google Scholar 

  • Elghozi JL and Julien C (2007) Sympathetic control of short-term heart rate variability and its pharmacological modulation. Fundam Clin Pharmacol 21(4):337--347

    Article  PubMed  CAS  Google Scholar 

  • Ernsberger U and Rohrer H (1996) The development of the noradrenergic transmitter phenotype in postganglionic sympathetic neurons. Neurochem Res 21(7):823--829

    Article  PubMed  CAS  Google Scholar 

  • Ernsberger U and Rohrer H (1999) Development of the cholinergic neurotransmitter phenotype in postganglionic sympathetic neurons. Cell Tissue Res 297(3):339--361

    Article  PubMed  CAS  Google Scholar 

  • Ernsberger U (2000) Evidence for an evolutionary conserved role of bone morphogenetic protein growth factors and phox2 transcription factors during noradrenergic differentiation of sympathetic neurons. Induction of a putative synexpression group of neurotransmitter-synthesizing enzymes. Eur J Biochem 267(24):6976--6981

    Article  PubMed  CAS  Google Scholar 

  • Esler M, Rumantir M, Kaye D, Jennings G, Hastings J, Socratous F and Lambert G (2001) Sympathetic nerve biology in essential hypertension. Clin Exp Pharmacol Physiol 28(12):986--989

    Article  PubMed  CAS  Google Scholar 

  • Francis NJ, Asmus SE and Landis SC (1997) CNTF and LIF are not required for the target-directed acquisition of cholinergic and peptidergic properties by sympathetic neurons in vivo. Dev Biol 182(1):76--87

    Article  PubMed  CAS  Google Scholar 

  • Francis NJ and Landis SC (1999) Cellular and molecular determinants of sympathetic neuron development. Annu Rev Neurosci 22:541--566

    Article  PubMed  CAS  Google Scholar 

  • Fukada K (1980) Hormonal control of neurotransmitter choice in sympathetic neurone cultures. Nature 287(5782):553--555

    Article  PubMed  CAS  Google Scholar 

  • Fulop T, Radabaugh S and Smith C (2005) Activity-dependent differential transmitter release in mouse adrenal chromaffin cells. J Neurosci 25(32): 7324--7332

    Article  PubMed  CAS  Google Scholar 

  • Furshpan EJ, MacLeish PR, O’Lague PH and Potter DD (1976) Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in microcultures: evidence for cholinergic, adrenergic, and dual-function neurons. Proc Natl Acad Sci U S A 73(11):4225--4259

    Article  PubMed  CAS  Google Scholar 

  • Furshpan EJ, Landis SC, Matsumoto SG and Potter DD (1986) Synaptic functions in rat sympathetic neurons in microcultures. I. Secretion of norepinephrine and acetylcholine. J Neurosci 6(4):1061--1079

    PubMed  CAS  Google Scholar 

  • Greene LA, Seeley PJ, Rukenstein A, DiPiazza M and A Howard (1984) Rapid activation of tyrosine hydroxylase in response to nerve growth factor. J Neurochem 42(6):1728--1734

    Google Scholar 

  • Habecker BA and Landis SC (1994) Noradrenergic regulation of cholinergic differentiation. Science 264(5165):1602--1604

    Article  PubMed  CAS  Google Scholar 

  • Habecker BA, Pennica D and Landis SC (1995) Cardiotrophin-1 is not the sweat gland-derived differentiation factor. Neuroreport 7(1):41--44

    PubMed  CAS  Google Scholar 

  • Habecker BA, Tresser SJ, Rao MS and Landis SC (1995) Production of sweat gland cholinergic differentiation factor depends on innervation. Dev Biol 167(1):307--316

    Article  PubMed  CAS  Google Scholar 

  • Habecker BA, Symes AJ, Stahl N, Francis NJ, Economides A, Fink JS, Yancopoulos GD and Landis SC (1997) A sweat gland-derived differentiation activity acts through known cytokine signaling pathways. J Biol Chem 272(48):30421--30428

    Article  PubMed  CAS  Google Scholar 

  • Huber LJ and Chao MV (1995) A potential interaction of p75 and trkA NGF receptors revealed by affinity crosslinking and immunoprecipitation. J Neurosci Res 40(4):557--563

    Article  PubMed  CAS  Google Scholar 

  • Jobling P and Gibbins IL (1999) Electrophysiological and morphological diversity of mouse sympathetic neurons. J Neurophysiol 82(5):2747--2764

    PubMed  CAS  Google Scholar 

  • Kreusser MM, Buss SJ, Krebs J, Kinscherf R, Metz J, Katus HA, Haass M and Backs J (2007) Differential expression of cardiac neurotrophic factors and sympathetic nerve ending abnormalities within the failing heart. J Mol Cell Cardiol

    Google Scholar 

  • Kupfermann I (1991) Functional studies of cotransmission. Physiol Rev 71(3):683--732

    PubMed  CAS  Google Scholar 

  • Lee KF, Li E, Huber LJ, Landis SC, Sharpe AH, Chao MV and Jaenisch R (1992) Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell 69(5):737--749

    Article  PubMed  CAS  Google Scholar 

  • Lockhart ST, Turrigiano GG and Birren SJ (1997) Nerve growth factor modulates synaptic transmission between sympathetic neurons and cardiac myocytes. J Neurosci 17(24):9573--9582

    PubMed  CAS  Google Scholar 

  • Lu B, Pang PT and Woo NH (2005) The yin and yang of neurotrophin action. Nat Rev Neurosci 6(8):603--614

    Article  PubMed  CAS  Google Scholar 

  • Luther JA and Birren SJ (2006) Nerve growth factor decreases potassium currents and alters repetitive firing in rat sympathetic neurons. J Neurophysiol 96(2):946--958

    Article  PubMed  CAS  Google Scholar 

  • Marder E, Christie AE and Kilman VL (1995) Functional organization of cotransmission systems: lessons from small nervous systems. Invert Neurosci 1(2):105--112

    Article  PubMed  CAS  Google Scholar 

  • Marvin WJ, Jr., Atkins DL, Chittick VL, Lund DD and Hermsmeyer K (1984) In vitro adrenergic and cholinergic innervation of the developing rat myocyte. Circ Res 55(1):49--58

    PubMed  Google Scholar 

  • O’Lague PH, Obata K, Claude P, Furshpan EJ and Potter DD (1974) Evidence for cholinergic synapses between dissociated rat sympathetic neurons in cell culture. Proc Natl Acad Sci U S A 71(9):3602--3606

    Article  PubMed  Google Scholar 

  • O’Lague PH, Furshpan EJ and Potter DD (1978) Studies on rat sympathetic neurons developing in cell culture. II. Synaptic mechanisms. Dev Biol 67(2):404--423

    Article  PubMed  Google Scholar 

  • O’Lague PH, Potter DD and Furshpan EJ (1978) Studies on rat sympathetic neurons developing in cell culture. I. Growth characteristics and electrophysiological properties. Dev Biol 67(2):384--403

    Article  PubMed  Google Scholar 

  • O’Lague PH, Potter DD and Furshpan EJ (1978) Studies on rat sympathetic neurons developing in cell culture. III. Cholinergic transmission. Dev Biol 67 (2):424--443

    Article  PubMed  Google Scholar 

  • Patterson PH and Chun LL (1974) The influence of non-neuronal cells on catecholamine and acetylcholine synthesis and accumulation in cultures of dissociated sympathetic neurons. Proc Natl Acad Sci U S A 71 (9):3607--3610

    Article  PubMed  CAS  Google Scholar 

  • Patterson PH and Chun LL (1977) The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. I. Effects of conditioned medium. Dev Biol 56 (2):263--280

    Article  PubMed  CAS  Google Scholar 

  • Potter DD, Landis SC, Matsumoto SG and Furshpan EJ (1986) Synaptic functions in rat sympathetic neurons in microcultures. II. Adrenergic/cholinergic dual status and plasticity. J Neurosci 6 (4):1080--1098

    PubMed  CAS  Google Scholar 

  • Potter DD, Matsumoto SG, Landis SC, Sah DW and Furshpan EJ (1986) Transmitter status in cultured sympathetic principal neurons: plasticity, graded expression and diversity. Prog Brain Res 68:103--120

    Article  PubMed  CAS  Google Scholar 

  • Randolph CL, Bierl MA and Isaacson LG (2007) Regulation of NGF and NT-3 protein expression in peripheral targets by sympathetic input. Brain Res 1144:59--69

    Article  PubMed  CAS  Google Scholar 

  • Ro, MS and Landis SC (1990) Characterization of a target-derived neuronal cholinergic differentiation factor. Neuron 5 (6):899--910

    Article  Google Scholar 

  • Rao MS, Patterson PH and Landis SC (1992) Multiple cholinergic differentiation factors are present in footpad extracts: comparison with known cholinergic factors. Development 116 (3):731--744

    PubMed  CAS  Google Scholar 

  • Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361 (1473):1545--1564

    Article  PubMed  CAS  Google Scholar 

  • Rohrer H (1992) Cholinergic neuronal differentiation factors: evidence for the presence of both CNTF-like and non-CNTF-like factors in developing rat footpad. Development 114 (3):689--698

    PubMed  CAS  Google Scholar 

  • Saadat S, Sendtner M and Rohrer H (1989) Ciliary neurotrophic factor induces cholinergic differentiation of rat sympathetic neurons in culture. J Cell Biol 108 (5):1807--1816

    Article  PubMed  CAS  Google Scholar 

  • Schafer MK, Schutz B, Weihe E and Eiden LE (1997) Target-independent cholinergic differentiation in the rat sympathetic nervous system. Proc Natl Acad Sci U S A 94 (8):4149--4154

    Article  PubMed  CAS  Google Scholar 

  • Schotzinger RJ and Landis SC (1988) Cholinergic phenotype developed by noradrenergic sympathetic neurons after innervation of a novel cholinergic target in vivo. Nature 335 (6191):637--639

    Article  PubMed  CAS  Google Scholar 

  • Schotzinger RJ and Landis SC (1990) Acquisition of cholinergic and peptidergic properties by sympathetic innervation of rat sweat glands requires interaction with normal target. Neuron 5 (1):91--100

    Article  PubMed  CAS  Google Scholar 

  • Seal RP and Edwards RH (2006) Functional implications of neurotransmitter co-release: glutamate and GABA share the load. Curr Opin Pharmacol 6 (1):114--119

    Article  PubMed  CAS  Google Scholar 

  • Slonimsky JD, Yang B, Hinterneder JM, Nokes EB and Birren SJ (2003) BDNF and CNTF regulate cholinergic properties of sympathetic neurons through independent mechanisms. Mol Cell Neurosci 23 (4):648--660

    Article  PubMed  CAS  Google Scholar 

  • Slonimsky JD, Mattaliano MD, Moon JI, Griffith LC and Birren SJ (2006) Role for calcium/calmodulin-dependent protein kinase II in the p75-mediated regulation of sympathetic cholinergic transmission. Proc Natl Acad Sci U S A 103 (8):2915--2919

    Article  PubMed  CAS  Google Scholar 

  • Stanke M, Duong CV, Pape M, Geissen M, Burbach G, Deller T, Gascan H, Otto C, Parlato R, Schutz G and Rohrer H (2006) Target-dependent specification of the neurotransmitter phenotype: cholinergic differentiation of sympathetic neurons is mediated in vivo by gp 130 signaling. Development 133 (1):141--150

    Article  PubMed  CAS  Google Scholar 

  • Wang HS and McKinnon D (1995) Potassium currents in rat prevertebral and paravertebral sympathetic neurones: control of firing properties. J Physiol 485 ( Pt 2):319--335

    PubMed  CAS  Google Scholar 

  • Watson AM, Hood SG and May CN (2006) Mechanisms of sympathetic activation in heart failure. Clin Exp Pharmacol Physiol 33 (12):1269--1274

    Article  PubMed  CAS  Google Scholar 

  • Weihe E, Schutz B, Hartschuh W, Anlauf M, Schafer MK and Eiden LE (2005) Coexpression of cholinergic and noradrenergic phenotypes in human and nonhuman autonomic nervous system. J Comp Neurol 492 (3):370--379

    Article  PubMed  CAS  Google Scholar 

  • Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, Hempstead BL and Lu B (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8 (8):1069--1077

    Article  PubMed  CAS  Google Scholar 

  • Wyatt S and Davies AM (1995) Regulation of nerve growth factor receptor gene expression in sympathetic neurons during development. J Cell Biol 130 (6):1435--1446

    Article  PubMed  CAS  Google Scholar 

  • Yamamori T, Fukada K, Aebersold R, Korsching S, Fann MJ and Patterson PH (1989) The cholinergic neuronal differentiation factor from heart cells is identical to leukemia inhibitory factor. Science 246 (4936):1412--1416

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Slonimsky JD and Birren SJ (2002) A rapid switch in sympathetic neurotransmitter release properties mediated by the p75 receptor. Nat Neurosci 5 (6):539--545

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Luther, J.A., Birren, S.J. (2009). Co-Release of Norepinephrine and Acetylcholine by Mammalian Sympathetic Neurons: Regulation by Target-Derived Signaling. In: Gutierrez, R. (eds) Co-Existence and Co-Release of Classical Neurotransmitters. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09622-3_4

Download citation

Publish with us

Policies and ethics