Skip to main content

Colocalization and Cotransmission of Classical Neurotransmitters: An Invertebrate Perspective

  • Chapter
  • First Online:
Co-Existence and Co-Release of Classical Neurotransmitters

Abstract

Once considered a curiosity, the notion that individual neurons can contain more than one classical neurotransmitter has gained increasing credibility in recent years. Several contributions to the growing recognition of classical neurotransmitter colocalization and cotransmission originate from studies using invertebrate nervous systems. Some of these model systems contain large identified neurons that contribute to well-understood circuits and networks. They therefore enable investigators to pose questions that are presently beyond the technical limitations of experimental approaches to mammalian brain function. This chapter reviews our current understanding of classical neurotransmitter colocalization and cotransmission in invertebrates. It focuses on identified neurons that could enable assessment of cotransmitter contributions to synaptic signals and neural network function. Major gaps in our present conception of classical neurotransmitter colocalization and cotransmission are emphasized, with an aim toward stimulating further study of their physiological and functional consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The neuronal network that generates Aplysia consummatory behaviors is located primarily in the buccal and cerebral ganglia. These ganglia have a bilaterally symmetrical organization and all neurons discussed in this article occur as pairs, one in each hemiganglion, unless otherwise noted. Cell nomenclature denotes the ganglion in which the cell body is located (Buccal in the case of B34). Numerals convey nominal information only, and do not specify neuron structure, function, or phenotype.

References

  • Adams ME, O’Shea M (1983) Peptide cotransmitter at a neuromuscular junction. Science 221:286–288

    Article  PubMed  CAS  Google Scholar 

  • Anderson BB, Ewing AG (1999) Chemical profiles and monitoring dynamics at an individual nerve cell in Planorbis corneus with electrochemical detection. J Pharm Biomed Anal 19:15–32

    Article  PubMed  CAS  Google Scholar 

  • Barker DL, Herbert E, Hildebrand JG, Kravitz EA (1972) Acetylcholine and lobster sensory neurones. J Physiol Lond 226:205–229

    PubMed  CAS  Google Scholar 

  • Barker DL, Kushner PD, Hooper NK (1979) Synthesis of dopamine and octopamine in the crustacean stomatogastric nervous system. Brain Res 161:99–113

    Article  PubMed  CAS  Google Scholar 

  • Beltz BS, Kravitz EA (1983) Mapping of serotonin-like immunoreactivity in the lobster nervous system. J Neurosci 3:585–602

    PubMed  CAS  Google Scholar 

  • Beltz B, Eisen JS, Flamm RE, Harris-Warrick RM, Hooper SL, Marder E (1984) Serotonergic innervation and modulation of the stomatogastric ganglion of three decapod crustaceans (Panulirus interruptus, Homarus americanus, and Cancer irroratus). J Exp Biol 109:35–54

    PubMed  CAS  Google Scholar 

  • Boer HH, Schot LP, Steinbusch HW, Montagne C, Reichelt D (1984) Co-existence of immunoreactivity to anti-dopamine, anti-serotonin and anti-vasotocin in the cerebral giant neuron of the pond snail Lymnaea stagnalis. Cell Tissue Res 238:411–412

    PubMed  CAS  Google Scholar 

  • Brezina V, Weiss KR (1997a) Analyzing the functional consequences of transmitter complexity. Trends Neurosci 20:538–543

    Google Scholar 

  • Brezina V, Weiss KR (1997b) Functional consequences of divergence and convergence in physiological signaling pathways. Mol Psychiatry 2:9–11

    Google Scholar 

  • Brownstein MJ, Saavedra JM, Axelrod J, Zeman GH, Carpenter DO (1974) Coexistence of several putative neurotransmitters in single identified neurons of Aplysia. Proc Natl Acad Sci 71:4662–4665

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (1976) Do some nerve cells release more than one transmitter? Neuroscience 1:239–248

    Article  PubMed  CAS  Google Scholar 

  • Cooke IM, Goldstone MW (1970) Fluorescence localization of monoamines in crab neurosecretory structures. J Exp Biol 53:651–668

    PubMed  CAS  Google Scholar 

  • Cooke IM, Sullivan RE (1982) Hormones and neurosecretion. In: Atwood HL, Sandeman DC (eds) The Biology of Crustacea, Vol 3, Neurobiology: Structure and Function, Academic Press, New York

    Google Scholar 

  • Cournil I, Geffard M, Moulins M, Le Moal M (1984) Coexistence of dopamine and serotonin in an identified neuron of the lobster nervous system. Brain Res 310:397–400

    Article  PubMed  CAS  Google Scholar 

  • Cournil I, Helluy SM, Beltz BS (1994) Dopamine in the lobster Homarus gammarus. I. Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivities in the nervous system of the juvenile. J Comp Neurol 344:455–469

    Article  PubMed  CAS  Google Scholar 

  • Croll RP (1987) Identified neurons and cellular homologies. In: Ali MA (ed) Nervous Systems in Invertebrates. New York: Plenum

    Google Scholar 

  • Croll RP (2001) Catecholamine-containing cells in the central nervous system and periphery of Aplysia californica. J Comp Neurol 441:91–105

    Article  PubMed  CAS  Google Scholar 

  • Cropper EC, Lloyd PE, Reed W, Tenenbaum R, Kupfermann I, Weiss KR (1987) Multiple neuropeptides in cholinergic motor neurons of Aplysia: evidence for modulation intrinsic to the motor circuit. Proc Natl Acad Sci USA:3486–3490

    Google Scholar 

  • Cropper EC, Evans CG, Hurwitz I, Jing J, Proekt A, Romero A, Rosen SC (2004) Feeding neural networks in the mollusk Aplysia. Neurosignals 13:70–86

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Ríos M, Miller MW (2005) Rapid dopaminergic signaling by interneurons that contain markers for catecholamines and GABA in the feeding circuitry of Aplysia. J Neurophysiol 93:2142–2156

    Article  PubMed  Google Scholar 

  • Díaz-Ríos M, Miller MW (2006) Target-specific regulation of synaptic efficacy in the feeding central pattern generator of Aplysia: Potential substrates for behavioral plasticity? Biol Bull 210:215–229

    Article  PubMed  Google Scholar 

  • Díaz-Ríos M, Suess E, Miller MW (1999) Localization of GABA-like immunoreactivity in the central nervous system of Aplysia californica. J Comp Neurol 413:255–270

    Article  PubMed  Google Scholar 

  • Díaz-Ríos M, Oyola E, Miller MW (2002) Colocalization of g-aminobutyric acid-like immunoreactivity and catecholamines in the feeding network of Aplysia californica. J Comp Neurol 445:29–46

    Article  PubMed  Google Scholar 

  • Due MR, Jing J, Weiss KR (2004) Dopaminergic contributions to modulatory functions of a dual-transmitter interneuron in Aplysia. Neurosci Letters 358:53–57

    Article  CAS  Google Scholar 

  • Elekes K, Kemenes G, Hiripi L, Geffard M, Benjamin PR (1991) Dopamine-immunoreactive neurons in the central nervous system of the pond snail, Lymnaea stagnalis. J Comp Neurol 307:214–224

    Article  PubMed  CAS  Google Scholar 

  • Elliott CJH, Susswein AJ (2002) Comparative neuroethology of feeding control in mollusks. J Exp Biol 205:877–896

    PubMed  CAS  Google Scholar 

  • Elste A, Koester J, Shapiro E, Panula P, Schwartz JH (1990) Identification of histaminergic neurons in Aplysia. J Neurophysiol 64:736–744

    PubMed  CAS  Google Scholar 

  • Fort TJ, Brezina V, Miller MW (2004) Modulation of an integrated central pattern generator-effector system: dopaminergic regulation of cardiac activity in the blue crab Callinectes sapidus. J Neurophysiol 92:3455–3470

    Article  PubMed  CAS  Google Scholar 

  • Fuller RR, Moroz LL, Gillette R, Sweedler JV (1998) Single neuron analysis by capillary electrophoresis with fluorescence spectroscopy. Neuron 20:173–181

    Article  PubMed  CAS  Google Scholar 

  • García-Crescioni KB, Miller MW, Stern E, Brezina V (2007) Serotonergic regulation of heartbeat in the crab Callinectes sapidus: actions on the CPG and periphery. Program No. 289.14. 2007 Neuroscience Meeting Planner. San Diego, CA: Society for Neuroscience, Online

    Google Scholar 

  • Gardner D, Kandel ER (1972) Diphasic postsynaptic potential: a chemical synapse capable of mediating conjoint excitation and inhibition. Science 176:675–678

    Article  PubMed  CAS  Google Scholar 

  • Gerschenfeld HM (1973) Chemical transmission in invertebrate central nervous systems and neuromuscular junctions. Physiol Rev 53:1–119

    PubMed  CAS  Google Scholar 

  • Getting PA (1989) Emerging principles governing the operation of neural networks. Annu Rev Neurosci 12:185–204

    Article  PubMed  CAS  Google Scholar 

  • Hernádi L, Juhos S, Elekes K (1993) Distribution of tyrosine-hydroxylase-immunoreactive and dopamine-immunoreactive neurons in the central nervous system of the snail Helix pomatia. Cell Tissue Res 274:503–513

    Article  Google Scholar 

  • Hernádi L, Elekes K (1995) Neurons with different immunoreactivity form clusters in the CNS of Helix pomatia. Acta Biol Hung 46:271–280

    PubMed  Google Scholar 

  • Hildebrand JG, Townsel JG, Kravitz EA (1974) Distribution of acetylcholine, choline, choline acetyltransferase and acetylcholinesterase in regions and single identified axons of the lobster nervous system. J Neurochem 23:951–963

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz I, Goldstein RS, Susswien AJ (1994) Compartmentalization of pattern-initiation and motor function in the B31 and B32 neurons of the buccal ganglia of Aplysia californica. 71:1514–1527

    CAS  Google Scholar 

  • Hurwitz I, Kupfermann I, Susswein AJ (1997) Different roles of B63 and B34 that are active during the protaction phase of buccal motor programs in Aplysia californica. J Neurophysiol 78:1305–1319

    PubMed  CAS  Google Scholar 

  • Hurwitz I, Kupfermann I, Weiss KR (2003) Fast synaptic connections from CBIs to pattern-generating neurons in Aplysia: Initiation and modification of motor programs. J Neurophysiol 89:2120–2136

    Article  PubMed  Google Scholar 

  • Jing J, Vilim FS, Wu J-S, Park J-H, Weiss KR (2003) Concerted GABAergic actions of Aplysia feeding interneurons in motor program specification. J Neurosci 23:5283–5294

    PubMed  CAS  Google Scholar 

  • Jing J, Weiss KR (2001) Neural mechanisms of motor program switching in Aplysia. J Neurosci 21:7349–7362

    Google Scholar 

  • Kabotyanski EA, Baxter DA, Byrne JH (1998) Identification and characterization of catecholaminergic neuron B65, which initiates and modifies patterned activity in the buccal ganglia of Aplysia. J Neurophysiol 79:605–621

    PubMed  CAS  Google Scholar 

  • Kandel ER (1975) Cellular basis of behavior. WH Freeman, San Francisco

    Google Scholar 

  • Kandel ER (1979) Behavioral biology of Aplysia. WH Freeman, San Francisco

    Google Scholar 

  • Katz PS, Frost WN (1995) Intrinsic neruomodulation in the Trtonia swim CPG: serotonin mediates both neuromodulation and neurotransmission by the dorsal swim interneurons. J Neurophysiol 74:2281–2294

    PubMed  CAS  Google Scholar 

  • Katz PS, Frost WN (1996) Intrinsic neuromodulation: altering neuronal circuits from within. Trends Neurosci 19:54–61

    Article  PubMed  CAS  Google Scholar 

  • Katz PS, Harris-Warrick RM (1989) Serotonergic/cholinergic muscle receptor cells in the crab stomatogastric nervous system. II. Rapid nicotinic and prolonged modulatory effects on neurons in the stomatogastric ganglion. J Neurophysiol 62:571–581

    PubMed  CAS  Google Scholar 

  • Katz PS, Harris-Warrick RM (1990a) Neuromodulation of the crab pyloric central pattern generator by serotonergic/cholinergic proprioceptive afferents. J Neurosci 10:1495–1512

    Google Scholar 

  • Katz PS, Harris-Warrick RM (1990b) Actions of identified neuromodulatory neurons in a simple motor system. Trends in Neurosci 13:367–373

    Google Scholar 

  • Katz PS, Eigg MH, Harris-Warrick RM (1989) Serotonergic/cholinergic muscle receptor cells in the crab stomatogastric nervous system. I. Identification and characterization of the gastropyloric receptor cells. J Neurophysiol 62:558–570

    PubMed  CAS  Google Scholar 

  • Kiehn O, Harris-Warrick RM (1992) Serotonergic stretch receptors induce plateau properties in a crustacean motor neuron by a dual-conductance mechanism. J Neurophysiol 68:485–495

    PubMed  CAS  Google Scholar 

  • Kuffler SW, Nichols JG, Martin AR (1984) From neuron to brain, (2nd ed). Sinauer Press, Sunderland MA

    Google Scholar 

  • Kupfermann I (1974a) Feeding behavior in Aplysia: a simple system for the study of motivation. Behav Biol 10:1–26

    Google Scholar 

  • Kupfermann I (1974b) Dissociation of the appetitive and consummatory phases of feeding behavior in Aplysia: a lesion study. Behav Biol 10:89–97

    Google Scholar 

  • Kupfermann I (1979) Modulatory actions of neurotransmitters. Annu Rev Neurosci. 2:447–465

    Google Scholar 

  • Kupfermann I (1991). Functional studies of cotransmission. Physiol Revs 71:683–732

    CAS  Google Scholar 

  • Kupfermann I, Weiss KR (2001) Motor program selection in simple model systems. Curr Opin Neuobiol 11:673–677

    Article  CAS  Google Scholar 

  • Kushner PD, Barker DL (1983) A neurochemical description of the dopaminergic innervation of the stomatogastric ganglion of the spiny lobster. J Neurobiol 14:17–28

    Article  PubMed  CAS  Google Scholar 

  • Kushner PD, Maynard EA (1977) Localization of monoamine fluorescence in the stomatogastric nervous system of lobsters. Brain Res 129:13–28

    Article  PubMed  CAS  Google Scholar 

  • Marder E (1999) Neural signalling: Does colocalization imply cotransmission? Curr Biol 9:R809–811

    Article  PubMed  CAS  Google Scholar 

  • Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717

    PubMed  CAS  Google Scholar 

  • Marder E, Hooper SL, Siwicki KK (1986) Modulatory action and distribution of the neuropeptide proctolin in the crustacean stomatogastric nervous system. J Comp Neurol 243:454–467

    Article  PubMed  CAS  Google Scholar 

  • Marder E. Christie AE, Kilman VL (1995) Functional organization of cotransmission systems: lessons from small nervous systems. Invert Neurosci 1:105–112

    Article  PubMed  CAS  Google Scholar 

  • Martí AA, Li X, Jockusch S, Li Z, Raveendra B, Kalachikov S, Russo JJ, Morozova I, Sathyanarayanan VP, Ju J, Turro NJ (2006) Pyrene binary probes for unambiguous detection of mRNA using time-resolved fluorescence spectroscopy. Nucleic Acids Res 34:3161–3168

    Article  PubMed  Google Scholar 

  • Martí AA, Jockusch S, Stevens N, Ju J, Turro NJ (2007) Fluorescent hybridization probes for sensitive and selective DNA and RNA detection. Acc Chem Res 40:402–409

    Article  PubMed  Google Scholar 

  • Maynard DM (1961b) Thoracic neurosecretory structures in Brachyura. II. Secretory neurons. Gen Comp Endocrinol 1:237–263

    Google Scholar 

  • Miller MW, Vu E, Krasne FB (1992) Cholinergic transmission at the first synapse mediating the crayfish lateral giant escape reaction. J Neurophysiol 68:2174–2184

    PubMed  CAS  Google Scholar 

  • Morgan PT, Perrins R, Lloyd PE, Weiss KR (2000) Intrinsic and extrinsic modulation of a single central pattern generating circuit. J Neurophysiol 84:1186–1193

    Google Scholar 

  • Moroz LL, Edwards JR, Puthanveettil SV, Kohn AB, Ha T, Heyland A, Knudsen B, Sahni A, Yu F, Liu L, Jezzini S, Iannucculli W, Chen M, Nguyen T, Sheng H, Shaw R, Kalachikov S, Panchin YV, Farmerie W, Russo JJ, Ju J, Kandel ER (2006) Neuronal transcriptome of Aplysia: neuronal compartments and circuitry. Cell 127:1453–1467

    Article  PubMed  CAS  Google Scholar 

  • Nusbaum MP, Blitz DM, Swensen AM, Wood D, Marder E (2001) The roles of co-transmission in neural network function. Trends Neurosci 24:146–154

    Article  PubMed  CAS  Google Scholar 

  • Ono JK, McCaman RE (1980) Identification of additional histaminergic neurons in Aplysia: Improvement of single cell isolation techniques for in tandem physiological and chemical studies. Neuroscience 5:835–840

    Article  PubMed  CAS  Google Scholar 

  • Ono JK, McCaman RE (1984) Immunocytochemical localization and direct assays of serotonin-containing neurons in Aplysia. Neuroscience 11:549–560

    Article  PubMed  CAS  Google Scholar 

  • Osborne NN (1979) Is Dale’s principle valid? Trends Neurosci 2:73–75

    Article  Google Scholar 

  • Osborne NN (1984) Putative neurotransmitters and their coexistence in gastropod mollusks. In: Chan-Palay V, Palay SL (eds) Coexistence of Neuroactive Substances in Neurons. Wiley. New York

    Google Scholar 

  • Pearson KG (1993) Common principles of motor control in vertebrates and invertebrates. Annu Rev Neurosci 16:265–297

    Article  PubMed  CAS  Google Scholar 

  • Pulver SR, Thirumalai V, Richards KS, Marder E (2003) Dopamine and histamine in the developing stomatogastric system of the lobster Homarus americanus. J Comp Neurol 462:400–414

    Article  PubMed  CAS  Google Scholar 

  • Robertson RM, Moulins M (1981) A corollary discharge of total foregut motor activity is monitored by a single interneurone in the lobster Homarus gammarus. J Physiol Paris 77:823–827

    PubMed  CAS  Google Scholar 

  • Sakharov DA, Voronezhskaya EE, Nezlin L, Baker MW, Elekes K, Croll RP (1996) Tyrosine hydroxylase-negative, dopaminergic neurons are targets for transmitter-depleting action of haloperidol in the snail brain. Cell Mol Neurobiol 16:451–461

    Article  PubMed  CAS  Google Scholar 

  • Salimova NB, Sakharov DA, Milosevic I, Turpaev TM, Rakic L (1987) Monoamine-containing neurons in the Aplysia brain. Brain Res 400:285–299

    Article  PubMed  CAS  Google Scholar 

  • Schulz DJ, Goaillard JM, Marder EE (2007) Quantitative expression profiling of identified neurons reveals cell-specific constrants of highly variable levels of gene expression. Proc Natl Acad Sci USA 104:13187–13191

    Article  PubMed  Google Scholar 

  • Selverston AI, Russell DF, Miller JP, King DG (1976) The stomatogastric nervous system: structure and function of a small neural network. Prog Neurobiol 7:215–290

    Article  PubMed  CAS  Google Scholar 

  • Siwicki KK, Beltz BS, Kravitz EA (1987) Proctolin in identified serotonergic, dopaminergic, and cholinergic neurons in the lobster, Homarus americanus. J Neurosci 7:522–532

    PubMed  CAS  Google Scholar 

  • Sosa MA, Hernández CM, Rivera N, Rolon S (2002) Tyrosine hydroxylase and FMRFamide immunohistochemistry in the CNS of the freshwater prawn Macrobrachium rosenbergii. Program No. 59.2. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, online

    Google Scholar 

  • Sullivan RE, Friend BJ, and Barker DL (1977) Structure and function of spiny lobster ligamental nerve plexuses: Evidence for synthesis, storage and secretion of biogenic amines. J Neurobiol 8:581–605

    Article  PubMed  CAS  Google Scholar 

  • Susswein AJ, Byrne JH (1988) Identification and characterization of neurons initiating patterned neural activity in the buccal ganglia of Aplysia. J Neurosci 8:2049–2061

    PubMed  CAS  Google Scholar 

  • Svensson E, Proekt A, Weiss KR (2004) Complementary effects of co-localized dopamine and GABA on synaptic transmission in the Aplysia feeding network. Program No. 537.4. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2004. Online

    Google Scholar 

  • Teyke T, Rosen SC, Weiss KR, Kupfermann I (1993) Dopaminergic neuron B20 generates rhythmic neuronal activity in the feeding motor circuitry of Aplysia. Brain Res 630:226–237

    Article  PubMed  CAS  Google Scholar 

  • Tierney AJ, Godleski MS, Rattananont P (1999) Serotonin-like immunoreactivity in the stomatogastric nervous systems of crayfishes from four genera. Cell Tissue Res 295:537–551

    Article  PubMed  CAS  Google Scholar 

  • Tierney AJ, Kim T, Abrams R (2003) Dopamine in crayfish and other crustaceans: Distribution in the central nervous system and physiological functions. Microsc Res Tech 60:325–335

    Article  PubMed  CAS  Google Scholar 

  • Weiss KR, Kupfermann I (1976) Homology of the giant serotonergic neurons (metacerebral cells) in Aplysia and pulmonate moluscs. Brain Res 117:33–49

    Article  PubMed  CAS  Google Scholar 

  • Wood DE, Derby CD (1996) Distribution of dopamine-like immunoreactivity suggests a role for dopamine in the courtship display behavior of the blue crab, Callinectes sapidus. Cell Tissue Res 285:321–330

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Harris-Warrick RM (1994) Multiple receptos mediate the modulatory effects of serotonergic neurons in a small neural network. J exp Biol 190:55–77

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by: the National Institutes of Health: NIGMS MBRS: GM-08224 and NCRR RCMI G12 RR03051; the National Science Foundation: DBI-0115825.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Miller, M.W. (2009). Colocalization and Cotransmission of Classical Neurotransmitters: An Invertebrate Perspective. In: Gutierrez, R. (eds) Co-Existence and Co-Release of Classical Neurotransmitters. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09622-3_13

Download citation

Publish with us

Policies and ethics